FIRE TESTS

OF

SOME NEW YORK BUILDING STONES

BY

W. E. McCOURT

PAGE PAGE
Introductory note.................. 5 Description of fire tests........ 16
Previous investigations of refractoriness........ 6 Granites and gneisses........... 17
Effect of fire on stone............. 9 Sandstones..................... 20
Tests......................... 12 Limestones..................... 22
Granites and gneisses............. 13 Marble......................... 24
Sandstones..................... 14 Summary....................... 26
Limestones..................... 15 Petrographic description of stones tested...... 29
Marble....................... 15 References.................... 36

ALBANY
NEW YORK STATE EDUCATION DEPARTMENT
1906'

Price 15 cents
New York State Education Department
Science Division, Sep. 26, 1905

Hon. Andrew S. Draper
Commissioner of Education

SIR: I beg to communicate for publication as a bulletin of the State Museum a treatise on *Fire Tests of New York Building Stones*, prepared by W. E. McCourt. The usefulness of this treatise to engineers, architects and boards of underwriters will, I believe, be immediate.

Very respectfully yours
JOHN M. CLARKE
Director and State Geologist

Approved for publication, Sep. 26, 1905

[Signature]

Commissioner of Education
FIRE TESTS
OF
SOME NEW YORK BUILDING STONES
BY
W. E. McCOURT

INTRODUCTORY NOTE

The recent extensive conflagrations in some of our large cities have made more urgent than ever a demand for definite knowledge of the capacity of various construction stones for resistance to fire. Little has been done in the investigation of refractoriness of building stones and it is probable that the occasional recorded tests have been based on series too incomplete and on samples too small for reliable coordination of results.

With the purpose of acquiring some definite information regarding the fire-resisting qualities of certain New York building stones, Prof. Heinrich Ries has, at my request, initiated and superintended the investigation here given, the details of the work having been carried out by Mr W. E. McCourt.

The types of building stones on which the work is based have been selected as representative of those produced in this State and all have been assembled specially for these investigations. A few examples also have been tested which are not now used for structural purposes.

The work has been done carefully and thoroughly and the result arrived at should prove of value to engineers, architects and fire insurance underwriters.

JOHN M. CLARKE
State Geologist
FIRE TESTS OF SOME NEW YORK BUILDING STONES

To determine the durability and desirability of the various building stones they are subjected to a number of artificial tests. The agents at work tending to destroy the building stone are the crushing and shearing forces caused by its position in a structure, the chemical action of gases and moisture in the atmosphere, and the physical agencies due to changes of temperature. The determinations sought in the laboratory of the effects of these various agencies are by tests for: crushing and transverse strength, permanence of color, specific gravity and weight per cubic foot, porosity and percentage of absorption, effect of alternate freezing and thawing, effect of the action of gases, as CO₂ and SO₃, effect of alternate expansion and contraction and effect of extreme heat.

It is our purpose to discuss the relative effect of extreme heat on a series of typical New York building stones. This phase of testing building stones has been heretofore more or less overlooked, yet its importance is evident so long as building construction in centers of population is largely dependent on these materials. A knowledge of the relative effect of extreme heat on the various stones employed for building purposes is of value in determining the kind of stone to be used in constructions and locations exposed to the chance of conflagration.

PREVIOUS INVESTIGATIONS OF THE REFRACTORINESS OF BUILDING STONES

The first investigator to carry on any series of tests to ascertain the relative capacity of the various building stones to resist the action of extreme heat was Cutting, who performed some experiments for the Weekly Underwriter in order that insurance rates might be more properly adjusted. He estimated the relative rank of different stones in their capacity to withstand the action of extreme heat as, from highest to lowest, marble, limestone, sandstone, granite and conglomerate.

Cutting¹ states:

As to granites . . . a heat sufficient to melt lead is sufficient to injure granite walls beyond the capability of repair, otherwise than by taking down, and it is almost, if not quite, impossible to burn out a granite building of small size, even, without injuring the walls.

Sandstones stand fire much better than granite. They stand uninjured a degree of heat that would destroy granite.

¹ Weekly Underwriter. 1880. 23:42.
Limestones and marble stand close up to and in some instances exceed the value of freestones.

The conglomerates and slates show no capacity to standing heat, as the slates crack and conglomerates are almost immediately ruined.

With regard to the granites, Cutting\(^1\) further states:

All these samples of building stones have stood heat without damage up to 500°C.\(^2\) At 600°C a few are injured, but the injury in many cases commences at or near that point. When cooled without immersion, they appear to the eye to be injured less but are ready to crumble and I think they are many times nearly as much impaired, and always somewhat injured, where water produces any serious injury.

As to the sandstones, he continues:

While as a whole they stand both heat and water better than granite, they are more or less injured. In fine, the capability of resisting heat has little connection with their density.

Of limestones, he says:

Limestones and marbles have come through the fiery ordeal more favorably than any of the other stones . . . The limestones and marbles seldom crack from heat and water. But when heat from the outside is excessive, they slightly crumble on the outside if water is thrown on them. When they are cooled without the application of water, the injury is much less.

The specimens tested stood fire well, as a whole, up to the temperature of heat necessary to convert them into quicklime, and at such a heat, if long continued, they are changed so as to flake off and crumble down. In most cases this heat is greater than 900°F. and in some cases beyond 1000°F.

N. H. Winchell\(^3\) has carried on a series of experiments on the building stones of Minnesota. He made use of a muffle furnace in which the temperature was raised to a red heat. One and one half to two inch cubes were placed in the furnace, and during heating were removed once or twice so that the effects of the treatment might be observed. The samples were then removed from the furnace and while hot were immersed in a tank of water and the results again noted. A study of the tables of that report shows that most of the stones cracked more or less. The effect of the sudden cooling of the stone was more disastrous than the mere heating.

Buckley\(^4\) in his experiments on the building stones of Wisconsin used 1 and 2 inch cubes in a muffle furnace in which the temperature was gradually increased from 600° to 1500° F. The effect of heating was noted from time to time. At 1300° to 1500°

\(^1\) Idem. 1880. 22:257, 287, 304.
\(^2\) The author here refers to the centigrade scale.
the samples were taken out; most of them were allowed to cool slowly and some were cooled suddenly by being plunged into cold water. He states:

Different building stones show a considerable difference in the capacity which they have to withstand high temperatures. Other things being equal, it appears that a rock having a uniform texture and a simple mineralogical composition has the greatest capacity to withstand extreme heat. It is known that rocks are poor conductors of heat, and for this reason the outer shell of a rock may be very highly heated while the interior remains comparatively cold. If, after heating, the rock be quickly cooled, contraction of the outer shell takes place. The differential stresses occasioned thereby ruptures the rock and the outer shell is thrown off.

Buckley\(^1\) continues:

As a result of the experiments . . . it was discovered that all the samples, when struck by the hammer or scratched with a nail, after being taken from the muffle furnace, emitted a sound similar to that which would be given off by a brick. This sound was characteristic not only of the sandstones, but also of the granites and some of the limestones.

The planes of lamination of the originally stratified samples were brought out more distinctly as the temperature was increased. But few of the limestone samples, which were tested in the muffle furnace, were injured by gradual heating and cooling, except when the temperature reached a point where calcination occurred. This temperature was generally from 1000° to 1200°F. When the limestone samples were suddenly cooled they always flaked off at the corners.

The very coarse grained granite broke into a great many pieces, and may be said to have exploded. The cracks were so numerous that the stone was broken into fragments not much larger than the individual grains. The medium grained granite . . . developed cracks through the middle of the sample.

In contrast with the limestone and granite samples, the sandstones were, to all outward appearances, little injured by the extreme heat. The samples which were taken from the muffle furnace and allowed to cool gradually were apparently as perfect as when first placed in the furnace. But after they had cooled, one could crumble any of them in the hand, almost as readily as the softest incoherent sandstone. In fact, when they were heated to a temperature of 1500°F. some of the samples had become so incoherent that it was barely possible to pick them up after cooling, without their falling to pieces.

G. P. Merrill\(^2\) summarizes the effect of heat on stones as follows:

The injurious effects of artificial heat, such as is produced by a burning building, are, of course, greater in proportion as the temperature is higher. Unfortunately, sufficient and reliable data are

\(^1\) Idem. 1898. 4385.
\(^2\) Stones for Building and Decoration. N.Y. 1903. p. 424.
not at hand for estimating accurately the comparative enduring powers of stone under these trying circumstances. It seems, however, to be well proven that of all stones granite is the least fireproof, while the fact that certain of the fine grained silicious sandstones are used for furnace backings would seem to show that if not absolutely fireproof, they are very nearly so.

It must be remembered, however, that the sudden cooling of the surface of a heated stone, caused by repeated dashes of cold water, has often more to do with the disintegration than heat alone.

In his report on the building stones of Missouri, Buckley¹ says:

In the case of limestone or dolomite the effect of gradual heating will be manifest by calcination, while sudden cooling will result in the flaking off of the corners. Sandstone and granite may show very little outward appearance of injury, although their strength may be so affected, especially in the case of sandstone, as to permit of their being crumbled in the hand. When suddenly cooled, ordinary sandstone shows very little exterior evidence of injury, while granite may show cracks without flaking. Stone which has been heated to a high temperature emits a characteristic ring when struck with metal. When scratched it emits a sound similar to that of a soft burned brick. This may be due to the loss of water of composition by the minerals composing the rock.

Experiments which have thus far been performed seem to indicate that few, if any, stones will withstand uninjured a temperature of 1500°F.

Van Schwartz² performed a series of tests on building stone and arrived at the conclusion that granite is of little account as a fireproof building material, and "neither sandstone nor limestone can be classed as flameproof, not to say fireproof, or is capable of affording any protection whatever in case of fire, since the former cracks at red heat and the latter is converted into quicklime at from 600° to 800°C."

EFFECT OF FIRE ON STONE AS OBSERVED IN CONFLAGRATIONS

From time to time extensive conflagrations have swept over cities, resulting not only in the destruction of millions of dollars worth of property, but also in the loss of life. Within the past few years the fires at Rochester in 1904, Baltimore in 1904 and Paterson in 1902, have given us an opportunity to study, in a general way, the effect of extreme heat on the various kinds of stone used for building purposes. However, it is not safe to draw any very definite conclusions from such observations, for the conditions and influences to which the stones were subjected may have differed very considerably in different parts of the burned area,

and moreover, there was, at the time, no thought of a means of making accurate observations of the conditions existing while the fire was in progress. The temperature may, in a general way, be estimated from the effect upon various metals in the fire; yet, withal, the conditions might vary so considerably as not to allow of any general conclusions. The fact that iron was melted at one point does not prove the existence of a similar temperature 50 feet away.

Many of the reports which have been circulated relative to the degree of heat attained in a fire are decidedly exaggerated, but experts are of the opinion that the heat seldom reaches a temperature greater than 1800°F, and usually it is much less.

But one conclusion can be reached after a study of the effect of fires on stone and that is that no building stone is absolutely fireproof, although some stones, in a way, show much more refractoriness than others. It must be granted, however, that some of the reports are rather overstated. For example, one writer¹ says:

The results of the various fires have proved the unreliability of granite and stone; the granite buildings were reduced to sand. Granite not only splits under heat, but from unequal expansion of the constituents, as it is porous and contains water in hygroscopic form, the steam generated by the heat bursts the rocky constituents into small particles. By these several actions the material is perfectly disintegrated. We all know that marble, as a limestone, is even more liable to speedy calcination, that sandstones vary much in density, their particles expand unequally and some split or crumble into pieces. The Baltimore conflagration has at least proved the worthlessness of natural stone to resist great heat, and for staircases in public buildings both lime and sandstone have long been held to be exceedingly dangerous under the action of fire and water.

Another observer² says:

To many persons the Baltimore fire seems to have put the question whether the American city of today can be so built as to be safe from such fires as those at Chicago in 1871, and at Boston in 1873, and to have answered it in the negative. The 150 acres of black and smoking ruins which were once the most substantially built portion of the sixth city of the United States permits no other conclusion. Already, on this showing alone, the public press has widely condemned the modern type of fireproof building, and some even whose words were weighted with expert authority in the public mind, have called for a return to "brick and mortar" as the only salvation of the building owner when conflagration besets his property.

This same writer observed that the window seats, lintels, projecting cornices and, in short, all exposed corners in thin edges of stone work were badly broken and splintered.

With regard to the effect of the Baltimore fire on stone work Grieshaber\(^1\) says:

Stone generally acted badly. Granite, especially the Maryland, spalled and cracked even where heat did not seem to be great. Marble calcined, and in some places seemed to be consumed with the heat. Limestone and buff sandstone acted badly and the only brownstone that seemed to stand heat fairly well was a dark brown of the appearance of Connecticut or Belleville. Slate generally acted badly. It shivered into splinters.

Woolson\(^2\) in a report to the *Engineering News* says of the effect of the fire at Baltimore on building stones:

All varieties of natural stone suffered severely from the fire. Granite, sandstone, limestone, marble and slate all perished before the long continued high temperature. Granite and sandstone cracked and spalled, limestone and marble cracked and calcined, while the slate shivered into thousands of thin plates.

There are some interesting exceptions to this general rule, whether due to the variety of the stone or the way the heat struck it, I am unable to state positively, but the former appeared to be the controlling cause.

Maryland granite, such as used in the Maryland Trust building and the Custom House failed badly. The same was true of the granite in the Baltimore & Ohio Railroad Co.'s building, which was said to come from Missouri. On the other hand, the Milford granite in the Equitable was little damaged, and that in the Calvert building (which looks like a New England stone) is in fair condition. The most remarkable preservation of granite I noticed was in the polished front of the First National Bank. It is in perfect condition, despite the fact that nothing but the walls remain.

Sandstone should give the best record of any of the stones, but in most cases it seemed to have succumbed like the others. Lake Superior red sandstone seems to be the stone employed in the Farmers and Merchants National Bank. It was badly spalled. Brown sandstone gave an equally poor showing in numerous buildings, but I noticed the front of three buildings which were in remarkable contrast, for they were uninjured. . . . Two of these buildings had wooden interior construction and were completely burned out, as well as all the surrounding buildings, but the face walls withstood the heat without any apparent damage, while the huge granite blocks of the Custom House a few doors away were ruined.

Plates 1-8 show the effect of fire on building stone. The Pater-

son views were taken from a pamphlet issued by the Continental Insurance Co. of New York on *The Conflagration at Paterson N. J.* The Baltimore views were taken from the report of the committee on fire resistive construction of the National Fire Protection Association of Chicago, issued in 1904, and from a pamphlet of the Mississippi Wire Glass Co. of New York entitled *A Reconnaissance of the Baltimore and Rochester Fire Districts.* The Rochester view was also taken from this last source.

TESTS MADE ON NEW YORK BUILDING STONES

Eighteen samples of New York building stones were selected for testing. The list of these is given below.
Fig. 1 Showing damage to granite in the City Hall at Paterson N. J. 1902

Fig. 2 Ruins of the Danforth City Library at Paterson N. J. 1902
Fig. 1 Showing damage to granite pillars in United States Public Store House No. 1 at Baltimore Md. 1904

Fig. 2 Showing effect of the fire on granite in United States Custom House, Baltimore Md. 1904
Equitable Building, Baltimore Md. The granite in this building was little damaged by the fire. 1904
Sandstone front of the Maryland Trust Building at Baltimore Md., damaged by the fire. 1904
Fig. 1 Bluestone front of the Baltimore & Ohio Railroad Co.'s building at Baltimore Md., damaged by fire. 1904

Fig. 2 City Courthouse at Baltimore Md., showing the damage to the marble facing. 1904
Baltimore & Ohio Railroad Co.'s building at Baltimore Md., showing the effect of the fire on the stonework and the slate roof. 1904.
CATHERINE
Fig. 1 Commercial & Farmers National Bank building at Baltimore Md., showing the damage to the stone carving. 1904

Fig. 2 Marble front of building of the International Trust Co. of Maryland, Baltimore Md., damaged by the fire. 1904
Plate 8

View of the burned district at Rochester N. Y. 1904
Tables showing the locality number, locality, company operating the quarry, use, general description and percentage of absorption of the stones tested in the laboratory.

Table 1

Granites and gneisses

<table>
<thead>
<tr>
<th>LOC. NO.</th>
<th>LOCALITY</th>
<th>COMPANY</th>
<th>DESCRIPTION OF STONE</th>
<th>USE</th>
<th>PER CENT ABSORPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pine Island, Orange co.</td>
<td>Empire State Granite Co.</td>
<td>Granite, coarse grained, pink</td>
<td>Building stone, paving block</td>
<td>.102</td>
</tr>
<tr>
<td>2</td>
<td>Garrison, 2½ m. s., Putnam co.</td>
<td>King Granite Co.</td>
<td>Granite, fine grained, gray</td>
<td>Building stone, paving block</td>
<td>.289</td>
</tr>
<tr>
<td>3</td>
<td>Peekskill, 3 m. s. e., Westchester co.</td>
<td>Coleman, Bruchard & Coleman co.</td>
<td>Granite, medium grained, light gray</td>
<td>Used only in construction of Croton dam</td>
<td>.291</td>
</tr>
<tr>
<td>4</td>
<td>Nyack, 2 m. n., Rockland co.</td>
<td>Manhattan Trap Rock Co.</td>
<td>Diabase, fine grained, dark gray</td>
<td>Road metal, concrete</td>
<td>.222</td>
</tr>
<tr>
<td>7</td>
<td>Keeseville, 2½ m. s., Essex co.</td>
<td>Property of C. B. White</td>
<td>Norite, medium grained, greenish</td>
<td>Building stone (not worked)</td>
<td>.188</td>
</tr>
<tr>
<td>9</td>
<td>Grindstone island, Jefferson co.</td>
<td>Parry Bros.</td>
<td>Granite, fine grained, red</td>
<td>Paving block</td>
<td>.178</td>
</tr>
<tr>
<td>10</td>
<td>Grindstone island, Jefferson co.</td>
<td>Kelly & Packard</td>
<td>Granite, coarse grained, red</td>
<td>Building and monumental stone</td>
<td>.155</td>
</tr>
<tr>
<td>11</td>
<td>Little Falls, Herkimer co.</td>
<td>Halliman Bros.</td>
<td>Augen gneiss, greenish gray</td>
<td>Road metal, some construction work</td>
<td>.304</td>
</tr>
<tr>
<td>14</td>
<td>Northville, 1. m. n., Fulton co.</td>
<td>Northville Granite and Marble Co.</td>
<td>Granite, coarse grained, dark gray</td>
<td>Monumental stone (not worked)</td>
<td>.107</td>
</tr>
</tbody>
</table>

1Other igneous rocks besides granite are included in this table.
<table>
<thead>
<tr>
<th>LOC. NO.</th>
<th>COMPANY</th>
<th>DESCRIPTION OF STONE</th>
<th>USE</th>
<th>PER CENT ABSORPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Potsdam Red Sandstone Co.</td>
<td>Red, quartze. fine grained, compact</td>
<td>Used extensively as a building stone</td>
<td>2.31</td>
</tr>
<tr>
<td>16</td>
<td>F. G. Clarke Bluestone Co.</td>
<td>Blue to gray, fine grained</td>
<td>Building stone</td>
<td>1.188</td>
</tr>
<tr>
<td>17</td>
<td>Carson Bros.</td>
<td>Red, fine grained, somewhat quartze</td>
<td>Widely used for building purposes</td>
<td>1.876</td>
</tr>
<tr>
<td>19</td>
<td>Warsaw Bluestone co.</td>
<td>Blue to gray, very fine grained</td>
<td>Building stone</td>
<td>3.064</td>
</tr>
</tbody>
</table>
Table 3
Limestones

<table>
<thead>
<tr>
<th>LOC. NO.</th>
<th>LOCALITY</th>
<th>COMPANY</th>
<th>DESCRIPTION OF STONE</th>
<th>USE</th>
<th>PER CENT ABSORPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Sandy Hill, 1/4 m. n., Washington co.</td>
<td>Higley & Barber</td>
<td>Fine grained, blue gray, compact</td>
<td>Flagging and structural work</td>
<td>.063</td>
</tr>
<tr>
<td>12</td>
<td>Little Falls, Herkimer co.</td>
<td>P. Kearney</td>
<td>Light gray, dolomitic and silicious</td>
<td>Used locally as a building stone</td>
<td>1.399</td>
</tr>
<tr>
<td>13</td>
<td>Palatine Bridge, 1/4 m. w., Montgomery co.</td>
<td>Mohawk Stone Co.</td>
<td>Variable, gray to black, compact to earthy</td>
<td>Formerly as a building stone, now quarried for railroad ballast</td>
<td>.057</td>
</tr>
<tr>
<td>15</td>
<td>Amsterdam, 1 m. n. e., Montgomery co.</td>
<td>D. C. Hewitt</td>
<td>Fine grained, gray, compact</td>
<td>Structural work, lime, road metal</td>
<td>.05</td>
</tr>
</tbody>
</table>

Table 4
Marble

<table>
<thead>
<tr>
<th>LOC. NO.</th>
<th>LOCALITY</th>
<th>COMPANY</th>
<th>DESCRIPTION OF STONE</th>
<th>USE</th>
<th>PER CENT ABSORPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>Gouverneur, St Lawrence co.</td>
<td>St Lawrence Marble Co.</td>
<td>Blue to gray, fairly coarse</td>
<td>Building and decorative stone</td>
<td>.142</td>
</tr>
</tbody>
</table>
DESCRIPTION OF FIRE TESTS

The samples from each locality were cut into three inch cubes. Most investigators, who have studied the refractoriness of building stones, have selected one or two inch cubes; but these sizes do not give as accurate results as the larger ones, for the reason that a small piece becomes easily heated throughout the mass and consequently upon neither heating nor cooling are differential stresses between the interior or exterior likely to be set up, as would be the case if larger cubes are selected. In actual fact in the burning of a building the stone does not become thoroughly heated; the heat penetrates probably but a slight distance into the mass, while the interior may remain comparatively cold. The heating and cooling of this outer shell causes strains which do not obtain in a stone which has been heated throughout its entire body. One, two and three inch cubes of the same kind of stone have been tested in the laboratory and while the smaller cubes stood fire very well, the larger ones were more affected and in some cases went to pieces. It was to avoid this error and to approach more closely the existing conditions in a conflagration that the three inch samples have been employed in the present series of tests.

As far as the number of cubes would admit six tests were made on the stone from each locality, four furnace and two flame tests. For the first set of experiments a Seger gas furnace was used, thus allowing the cube to be gradually and evenly heated. An opening was cut in the cover of the furnace large enough to admit the three inch cube of stone, to which a wire had been attached to facilitate its handling.

One sample was heated at a time. The heat was applied gradually for half an hour until a temperature of 550°C. was reached, which was maintained for half an hour. The temperature was measured with a thermo-electric pyrometer. The cube was then taken out and allowed to cool in the air. A second sample was heated, as before, to 550°, and this was suddenly cooled by a strong stream of water. The third and fourth cubes were heated to 850°C. kept at that temperature for half an hour and cooled slowly and suddenly as in the 550° tests.

In order to approach more nearly the conflagration conditions samples were subjected to two flame tests. In the first case the cube was so placed as to be enveloped on three sides by a steady but not strong gas blast. The flame was allowed to play on the cube for 10 minutes, then the samples were allowed to cool for
five minutes after which time the flame was again applied for 10 minutes and the cube was again allowed to cool. To determine the combined action of heat and water a second cube was subjected, as before, to the flame for 10 minutes, then a strong stream of water was turned on to the sample, along with the flame, for five minutes. Then the water was turned off and the flame continued for another five minutes, after which, for five minutes more the flame and water together were allowed to act on the sample.

The results of these various tests are given in the sections of the paper which follow and the tabulated effects are shown in tables 5, 6, 7 and 8 with the separate sections. Reference to the plates will show plainly the effect of these experiments on the different kinds of stone.

Thin sections of most of the rocks tested were examined under the microscope with the hope that they might shed some light on the cause of the variations in refractoriness of the different stones. Unfortunately they did not and therefore the petrographic descriptions are placed at the end of the paper.

Fire tests on granites and gneisses

The cubes, for the most part, in the 550° tests stood up very well. All of the samples remained uninjured on slow cooling, with the exception of the gneiss from Little Falls (11) which developed a few cracks. On sudden cooling but two samples seemed to have been injured, and only slightly so. These are a coarse grained granite from Pine Island (1) and a fine grained granite from Grindstone island (9). The gneiss from Little Falls (11) was measurably more affected on fast than on slow cooling. It will be noticed in reference to the table that three of the samples, Pine Island (1), Little Falls (11) and Northville (14), took on a brownish tinge. This is probably due to a change in the condition of the iron present from a ferrous to a ferric state.

At the higher temperature (850°) none of the samples remained uninjured, though some suffered more than others. In all cases the sudden cooling did more damage than the slow cooling. The gneiss, Little Falls (11), acted very badly, especially on sudden cooling, in which test it split parallel to the bands and had numerous other cracks. The fine grained stones, Nyack (4) and Grindstone island (9), showed a tendency to spall off at the corners, while all the other samples, which are coarse grained, cracked very

1These numbers refer to samples as listed and described at the end of the paper.
irregularly, usually around the individual grains. In the Peekskill sample (3) this cracking went so far as to cause the stone to be broken into fragments the size of the mineral particles making up the rock. The very coarse sample from Northville (14) suffered badly.

In the flame test one of the cubes, Nyack (4) remained intact and most of the others were but slightly injured. The fine grained granite from Grindstone Island (9) was the most visibly affected, having a large piece broken off from the corner against which the flame was directed. The gneiss, Little Falls (11), besides having a small corner broken off developed some cracks parallel to the banding.

Under the action of the flame and water none of the cubes remained uninjured, though in the Keeseville (7) and Northville (14) samples only small cracks were developed. The Pine Island granite (1) was badly cracked, yet only a few grains came off the edge. The Peekskill granite (3) was disintegrated, breaking up into its individual grains and the Little Falls gneiss (11) was very badly affected. The samples from Garrison (2), Nyack (4) and Grindstone island (9) were quite badly injured, while the coarse grained Grindstone island stone (10) was less affected.
<table>
<thead>
<tr>
<th>LOC. NO.</th>
<th>LOCALITY</th>
<th>550° SLOW COOLING</th>
<th>550° FAST COOLING</th>
<th>850° SLOW COOLING</th>
<th>850° FAST COOLING</th>
<th>FLAME TEST</th>
<th>FLAME AND WATER TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pine Island, Orange co.</td>
<td>82 Slight brown tinge, otherwise unchanged</td>
<td>83 Slight brown tinge, one small crack on one side</td>
<td>81 Slight brown tinge, some irregular cracks</td>
<td>No cube tested</td>
<td>156 Slight crack across upper face, some grains off edge</td>
<td>122 Corner badly cracked, some grains off</td>
</tr>
<tr>
<td>2</td>
<td>Garrisons, Putnam co.</td>
<td>90 Unchanged</td>
<td>91 Unchanged</td>
<td>No cube tested</td>
<td>No cube tested</td>
<td>157 Small piece off corner, slight crack across corner</td>
<td>123 Large piece off front edge, some small pieces and grains</td>
</tr>
<tr>
<td>3</td>
<td>PEEKskill, Westchester co.</td>
<td>112 Unchanged</td>
<td>113 Unchanged</td>
<td>114 Badly cracked, especially across the corners</td>
<td>115 Badly affected, went to pieces in fragments the size of the grains</td>
<td>158 Small corner off in small pieces, two slight cracks</td>
<td>124 Badly affected, went to pieces</td>
</tr>
<tr>
<td>4</td>
<td>Nyack, Rockland co.</td>
<td>116 Unchanged</td>
<td>117 Unchanged</td>
<td>118 Brown tinge, one crack around three sides</td>
<td>119 Brown tinge, one bad crack around three sides, three corners cracked, other small cracks</td>
<td>159 Unchanged</td>
<td>125 Cube split in two other cracks, front edge off in several pieces</td>
</tr>
<tr>
<td>7</td>
<td>Keeseville, Essex co.</td>
<td>120 Browned, otherwise unaffected</td>
<td>121 Browned, otherwise unaffected</td>
<td>No cube tested</td>
<td>No cube tested</td>
<td>No cube tested</td>
<td>127 One slight crack at edge and corner</td>
</tr>
<tr>
<td>9</td>
<td>Grindstone Island, Jefferson co.</td>
<td>30 Unchanged</td>
<td>31 Few small cracks</td>
<td>32 Some cracks, across the corners</td>
<td>33 Some cracks, also cracked across the corners</td>
<td>163 Three inch corner off in one small and one large piece</td>
<td>129 Badly affected, cube split in two, many smaller pieces</td>
</tr>
<tr>
<td>10</td>
<td>Grindstone Island, Jefferson co.</td>
<td>43 Unchanged</td>
<td>44 Unchanged</td>
<td>45 Badly cracked irregularly</td>
<td>46 Very badly cracked, irregularly</td>
<td>163 Small piece off corner</td>
<td>130 More affected than 163, several pieces and grains off</td>
</tr>
<tr>
<td>11</td>
<td>Little Falls, Herkimer co.</td>
<td>95 Slight brown tinge, few cracks</td>
<td>96 Slight brown tinge, one crack almost around four sides parallel to banding, one smaller crack</td>
<td>107 Browned, one open crack around three sides along banding, one across banding</td>
<td>97 Browned, badly cracked, split in two along banding, one large piece off</td>
<td>164 Some cracks, small piece off corner</td>
<td>131 Quite badly affected, cracked considerably, many pieces off front edge</td>
</tr>
<tr>
<td>14</td>
<td>Northville, Fulton co.</td>
<td>104 Brown tinge, otherwise unaffected</td>
<td>105 Brown tinge, otherwise unaffected</td>
<td>No cube tested</td>
<td>106 Badly cracked, grains off, one corner almost off</td>
<td>167 Two slight cracks</td>
<td>134 Two slight cracks</td>
</tr>
</tbody>
</table>
Fire tests on sandstones

After having been heated to 550° none of the samples remained uninjured, though in all cases, on slow cooling, the cracks which developed were very slight and along the bed. The Warsaw bluestone (19) was changed to a deep brown color and besides cracking slightly along the bed, also showed some small transverse cracks. The Oxford sandstone (16) also took on a brown tinge because of the change in the condition of the iron present in the stone. The sudden cooling damaged the stones to a slightly greater extent. The Medina sandstone (17) seems to have suffered the most, for it not only developed cracks along the bed, but split in two and showed some transverse cracks.

In the 850° tests all of the cubes except the Warsaw bluestone (19) split in two along the bed, both after slow and sudden cooling, and in all cases, except in the sample from Warsaw, slight transverse cracks were developed. The Warsaw stone was not very badly affected on slow cooling, but upon fast cooling developed one open crack around three sides, along the bed. The lamination planes of the Potsdam stone (8) were made more prominent as the heat was increased.

Under the action of the flame, but one sample, Oxford (16), came through without losing a piece from the corner, but around the corner were two series of cracks. The sandstones from Medina (17) and Warsaw (19) had small pieces broken off, while the Potsdam sample lost a large piece. In no cases were any cracks developed along the bed.

Under the action of the flame and water the cubes all suffered the loss of the corners. The Warsaw sample (19) was split into eight parallel plates. The Potsdam cube (8), besides being badly broken at the corner, split in two along the bed. The Oxford stone (16) lost a large part from the corner and upper edge and the sample from Medina (17) lost a small portion from an upper edge, but developed a crack around three sides and along the bed.
<table>
<thead>
<tr>
<th>LOC. NO.</th>
<th>LOCALITY</th>
<th>550° SLOW COOLING</th>
<th>550° FAST COOLING</th>
<th>850° SLOW COOLING</th>
<th>850° FAST COOLING</th>
<th>FLAME TEST</th>
<th>FLAME AND WATER TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Potsdam, St Law-</td>
<td>61 One slight crack</td>
<td>62 Bedding planes</td>
<td>63 Bedding planes</td>
<td>161 Some small</td>
<td>128 Cube split in two along bed,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rence co.</td>
<td>along bed</td>
<td>more prominent,</td>
<td>more prominent,</td>
<td>cracks, two inch</td>
<td>corner and edges badly broken,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>two slight cracks</td>
<td>cube split in two</td>
<td>piece off corner</td>
<td>many pieces off</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>along bed</td>
<td>along bed, some</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>transverse cracks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Oxford, Chenango</td>
<td>11 Brown, some</td>
<td>12 Brown, some</td>
<td>10 Brown tinge,</td>
<td>168 Two series of</td>
<td>136 Large piece off corner and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>co.</td>
<td>slight cracks</td>
<td>slight cracks</td>
<td>cube split in two</td>
<td>parallel cracks</td>
<td>edge in several fragments</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>along bed, some</td>
<td>around corner,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>transverse cracks</td>
<td>no pieces off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Medina, Orleans</td>
<td>14 Few cracks along</td>
<td>13 Color slightly</td>
<td>15 Color slightly</td>
<td>169 Two small</td>
<td>137 Cracked along bed around</td>
<td></td>
</tr>
<tr>
<td></td>
<td>co.</td>
<td>bed</td>
<td>darker, cube split</td>
<td>darker, cube split</td>
<td>small cracks, small</td>
<td>three sides, corner and upper edge</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in two along bed,</td>
<td>in two along bed,</td>
<td>piece off corner</td>
<td>off in several pieces</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>other cracks</td>
<td>other cracks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>along bed, some</td>
<td>along bed, some</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>across</td>
<td>across</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Warsaw, Wyoming</td>
<td>2 Browned, few</td>
<td>1 Browned, some</td>
<td>3 Deep brown, one</td>
<td>171 Small piece off</td>
<td>139 Badly affected, cube split</td>
<td></td>
</tr>
<tr>
<td></td>
<td>co.</td>
<td>slight cracks along</td>
<td>cracks along bed,</td>
<td>prominent crack</td>
<td>corner</td>
<td>into 8 parallel layers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bed, some small</td>
<td>small transverse</td>
<td>around three sides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ones on three</td>
<td>ones on three</td>
<td>approximately</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sides</td>
<td>sides</td>
<td>along bed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6

Fire tests on sandstones
Fire tests on limestones

As a whole, the limestones may be said to have been little affected at the low temperature after slow cooling. Nor has calcination taken place at 550°. The sample from Palatine Bridge (13) developed one slight crack around the cube, but the others remained intact. On sudden cooling, the Sandy Hill (5) and Little Falls (12) samples still remained unchanged, but the Amsterdam cube (15) showed one irregular crack around four sides, and the cube from Palatine Bridge (13) was slightly more damaged than the slowly cooled cube.

At 850° all the samples were calcined to a greater or less extent; due to the varying compositions of the stones. The Little Falls sample (12) showed only slight calcination because it is very dolomitic and contains much silica. Likewise the cube from Sandy Hill (5) because of its silicious nature, showed little calcination, while the Palatine Bridge stone (13) flaked off considerably. Upon slow cooling the Little Falls sample (12) developed one small crack around two sides, while the Palatine Bridge cube (13) flaked off badly and showed some cracks. After sudden cooling the Little Falls stone still continued to stand up very well, showing but two slight cracks. The Sandy Hill cube (5) developed one open crack on one side, and the Palatine Bridge stone (13) showed one open crack around three sides besides some transverse ones. In the slowly cooled cube the quicklime flaked off, but in the suddenly cooled one it did not flake. This is due, probably, to the "setting" of the quicklime when the water was applied.

The sample from Little Falls (12) was the only one to lose a piece from the corner in the flame tests. The others were slightly cracked but lost no pieces from the corners. In all cases, however, the action of the flame and water damaged the corners to the extent that pieces came off. The sample from Little Falls (12) lost a large piece and the Sandy Hill (5) and Amsterdam (15) stones lost smaller pieces, while the cube from Palatine Bridge (13) was quite badly injured.
Table 7

Fire tests on limestones

<table>
<thead>
<tr>
<th>LOC. NO.</th>
<th>LOCALITY</th>
<th>550° SLOW COOLING</th>
<th>550° FAST COOLING</th>
<th>850° SLOW COOLING</th>
<th>850° FAST COOLING</th>
<th>FLAME TEST</th>
<th>FLAME AND WATER TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Sandy Hill, Washington co.</td>
<td>92 Unchanged</td>
<td>93 Unchanged</td>
<td>No cube tested</td>
<td>94 Calcined, no flaking, one open crack on one side</td>
<td>160 Cracked at front edge, no pieces off</td>
<td>126 Small pieces off corner</td>
</tr>
<tr>
<td>12</td>
<td>Little Falls, Herkimer co.</td>
<td>38 Unchanged</td>
<td>39 Unchanged</td>
<td>40 Slight calcination, one small crack around two sides</td>
<td>41 Slight calcination, two small cracks</td>
<td>165 Two inch piece off corner</td>
<td>132 One small crack, large piece off corner and front edge</td>
</tr>
<tr>
<td>13</td>
<td>Palatine Bridge, Montgomery co.</td>
<td>54 One slight crack around the cube</td>
<td>55 One crack around the cube</td>
<td>56 Calcined, flaking off of quicklime, some cracks</td>
<td>57 Calcined, flaking not so bad as in 56. One open crack around three sides, some smaller ones</td>
<td>166 One slight crack at front edge</td>
<td>133 Large front edge off in several pieces, little pieces calcined</td>
</tr>
<tr>
<td>15</td>
<td>Amsterdam, Montgomery co.</td>
<td>88 Unchanged</td>
<td>89 One irregular crack around four sides</td>
<td>No cube tested</td>
<td>No cube tested</td>
<td>No cube tested</td>
<td>135 Some small pieces off corner, little pieces calcined</td>
</tr>
</tbody>
</table>

Note: Locality names and other details have been translated or adapted for clarity.
Fire tests on marble

Only one sample of marble was tested, Gouverneur (35). The stone was little affected at the lower temperature, only in the suddenly cooled cube did any cracks appear and here they were but slight and seemed to be along planes of weakness due to the difference in texture of parts of the stone.

At the higher temperature the slowly cooled cube was disintegrated to a greater extent than the fast cooled sample. The former made a poor showing and had one bad crack around three sides while the latter shows no cracks and the corners were but slightly rounded. The greater disintegration of the slowly cooled cube is due, as in the limestones, to the "setting" of the lime under the action of the water.

The flame alone cracked the sample badly and caused some small pieces to be broken off from the edge. The flame and water, acting together, besides cracking the cube badly broke off four large pieces from the three sides which were enveloped by the flame.
<table>
<thead>
<tr>
<th>LOC. NO.</th>
<th>LOCALITY</th>
<th>550° SLOW COOLING</th>
<th>550° FAST COOLING</th>
<th>850° SLOW COOLING</th>
<th>850° FAST COOLING</th>
<th>FLAME TEST</th>
<th>FLAME AND WATER TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>Gouverneur, St Lawrence co.</td>
<td>22 Unchanged</td>
<td>25 Two small grains off one corner, slight crack</td>
<td>24 Calcined, corners rounded by flaking off of quicklime, one bad crack around three sides</td>
<td>23 Calcined, corners slightly rounded, not so bad as 24</td>
<td>183 Slight calcination at edge, some grains off, quite badly cracked</td>
<td>155 Slight calcination at edge, badly cracked, large pieces off</td>
</tr>
</tbody>
</table>
SUMMARY

From the details above given some generalizations can be drawn which are of interest and of value. It is difficult, however, to group the different kinds of stone in any order, for they vary among themselves and also act differently under different conditions. A stone which under some conditions stands up very well, will disintegrate under other conditions. Thus, for example, the granite from Northville [pl. 17] acted very badly on fast cooling after having been heated to 850°, yet, under the combined action of the flame and water, it was little damaged. Additional variations of this character are brought out by a close study of the tables of fire tests, all of which goes to show that, for one temperature, the order of resistance will differ from the order given for another temperature.

At 550°C. (1022°F.) most of the stones stood up very well. The temperature does not seem to have been high enough to cause much rupturing of the samples, either upon slow or fast cooling. The sandstones, limestones, marble and gneiss were slightly injured, while the granites seem to have suffered the least.

The temperature of a severe conflagration would probably be higher than 550°C. but there would be buildings outside of the direct action of the fire which might not be subjected to this degree of heat and in this zone the stones would suffer little injury. The sandstones might crack somewhat; but, as the cracking seems to be almost entirely along the bed, the stability of the structure would not be endangered, provided the stone had been properly set.

The gneiss would fail badly, especially if it were coarse grained and much banded. The coarse grained granites might suffer to some extent. These, though cracked to a less extent than the sandstones, would suffer more damage and possibly disintegrate if the heat were long continued because the irregular cracks, intensified by the crushing and shearing forces on the stone incident to its position in the structure, would tend to break it down. The limestones and marble would be little injured.

The temperature of 850°C. (1562°F.) represents fairly the probable degree of heat reached in a conflagration, though undoubtedly it exceeds that in some cases. At this temperature we find that the stones behave somewhat differently than at the lower temperature. All the cubes tested were injured to some degree, but among themselves they vary widely in the extent of the damage.

All the igneous stones and the gneiss at 850°C. suffered injury in varying degrees and in various ways. The coarse grained granites
were damaged the most by cracking very irregularly around the individual mineral constituents [pl. 11, Peekskill; 15, Grindstone island; and 17, Northville]. Naturally, such cracking of the stone in a building might cause the walls to crumble. The cracking is due, possibly, to the coarseness of texture and the differences in coefficient of expansion of the various mineral constituents. Some minerals expand more than others and the strains occasioned thereby will tend to rupture the stone more than if the mineral composition is simpler. This rupturing will be greater, too, if the rock be coarser in texture. For example, a granite containing much plagioclase would be more apt to break into pieces than one with little plagioclase for the reason that this mineral expands in one direction and contracts in another, and this would set up stresses of greater proportion than would be occasioned in a stone containing little of this mineral. The fine grained samples [pl. 12, Nyack; and pl. 14, Grindstone island] showed a tendency to spall off at the corners. The gneiss [pl. 16, Little Falls] was badly injured. In the gneisses the injury seems to be controlled by the same factors as in the granites, but there comes in here the added factor of banding. Those which are made up of many bands would be damaged more severely than those in which the banding is slight.

All the sandstones which were tested are fine grained and rather compact. All suffered some injury, though, in most cases, the cracking was along the lamination planes. In some cubes, however, transverse cracks were also developed.

The variety of samples was not great enough to warrant any conclusive evidence toward a determination of the controlling factors. It would seem, however, that the more compact and hard the stone is the better will it resist extreme heat. The following relation of the percentage of absorption to the effect of the heat is interesting. In a general way the greater the absorption, the greater the effect of the heat. A very porous sandstone will be reduced to sand and a stone in which the cement is largely limonite or clay will suffer more than one held together by silica or lime carbonate.

<table>
<thead>
<tr>
<th>PERCENTAGE OF ABSORPTION</th>
<th>PLATE</th>
<th>LOCALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.084</td>
<td>25</td>
<td>Warsaw</td>
</tr>
<tr>
<td>2.310</td>
<td>22</td>
<td>Potsdam</td>
</tr>
<tr>
<td>1.876</td>
<td>24</td>
<td>Medina</td>
</tr>
<tr>
<td>1.118</td>
<td>23</td>
<td>Oxford</td>
</tr>
</tbody>
</table>
The limestones, up to the point where calcination begins (600°–800°C.) were little injured, but above that point they failed badly, owing to the crumbling caused by the flaking of the quicklime. The purer the stone, the more will it crumble [compare pl. 24, Palatine Bridge, with pl. 22, Sandy Hill, or pl. 23, Little Falls]. The marble behaves similarly to the limestone; but, because of the coarseness of the texture, also cracks considerably. As has been mentioned before, both the limestones and marble on sudden cooling seem to flake off less than on slow cooling.

The flame tests can not be considered as indicative of the probable effect of a conflagration upon the general body of the stone in a building, but rather as an indication of the effect upon projecting cornices, lintels, pillars, carving and all thin edges of stonework. All the stones were damaged to some extent. The samples from Keeseville [pl. 13] and Northville [pl. 17] stood up very well; the limestones were, as a whole, comparatively little injured, while the marble was badly damaged. The tendency seems to be for the stone to split off in shells around the point where the greatest heat strikes the stone. The temperature of the flame probably did not exceed 700°C., so it is safe to say that in a conflagration all carved stone and thin edges would suffer. However, outside of the intense heat, the limestones would act best, while the other stones would be affected in the order: sandstone, granite, gneiss and marble.

After having been heated to 850°C., most of the stones, as observed by Buckley¹, emit a characteristic ring when struck with metal and when scratched emit a sound similar to that of a soft burned brick. It will be noted that in those stones in which iron is present in a ferrous condition the color was changed to a brownish tinge owing to the change of the iron to a ferric state. If the temperature does not exceed 550°C., all the stones will stand up very well, but at the temperature which is probable in a conflagration, in a general way, the finer grained and more compact the stone and the simpler in mineralogic composition the better will it resist the effect of the extreme heat. The order, then, of the refractoriness of the New York stones which were tested might be placed as sandstone, fine grained granite, limestone, coarse grained granite, gneiss and marble.

PETROGRAPHIC DESCRIPTION OF STONES TESTED

1 Granite

Pine Island, Orange co. N. Y.

EMPIRE STATE GRANITE CO.

See plate 9

This is a coarse grained gneissic granite of a pinkish color due to an excess of pink feldspar in the stone. Quartz of a transparent variety is next in abundance, while biotite is present in small amounts and in places shows alteration to chlorite. Green hornblende was also noted in the hand specimen. The stone is used largely for building purposes and the smaller pieces are cut into paving blocks.

Under the microscope the feldspars were seen to be the most prominent mineral. Microcline is the chief variety with some microperthite, orthoclase and a little soda plagioclase. All are comparatively fresh. The quartz shows many fractures. Strongly pleochroic green to brown hornblende, which in places has altered to chlorite and epidote, is also present. The biotite has a slight greenish tinge probably due to chloritization. Ilmenite is not rare and large well wedge-shaped crystals of sphene were also seen. Some zircons, smallapatites and pyrite grains are scattered through the mass.

Pressure phenomena are well shown, evidenced by the crushing of the quartz, bending of the mica scales and fracturing of the feldspar. In some of these cracks muscovite and calcite are present. The crystals of the stone are well interlocked, giving a firmness and compactness to the whole mass.

2 Granite

Garrison, Putnam co. N. Y.

KING GRANITE CO.

See plate 10

This is a fine grained gray granite used for building purposes, which, in the hand specimen, shows light feldspar, smoky quartz and biotite, with subordinate grains of garnet.

In the thin section, the feldspars, which are quite fresh, were seen to be orthoclase, microcline and microcline microperthite, microperthite and a soda plagioclase. Deep brown to light biotite is present, and has bleached in places, but in others has altered to chlorite. There are also small amounts of secondary calcite,
apatites and some recrystallized quartz. A few ore grains are scattered through the mass. This granite also shows evidences of crushing.

3 Granite

Peekskill, Westchester co. N. Y.

COLEMAN, BRUCHARD & COLEMAN

See plate 11

The stone from this locality has been quarried for use in the construction of the Croton dam. It is a medium to coarse grained, very light stone made up of white feldspar, smoky quartz and muscovite with small amounts of biotite.

Under the microscope, quartz and feldspar are the more prominent minerals, the feldspar being mostly a very acid plagioclase idiomorphic with respect to the orthoclase, of which there is comparatively little. Some microline and micropegmatite are also present. The feldspars show alteration, mostly to muscovite. They are clouded, usually in the center, although, in some cases, the alteration has been in zones around the outside of the crystals, beyond which more feldspar has been deposited. Of the alteration products muscovite alone is recognizable, though kaolinite may also be present. Both muscovite and biotite were seen, the former being the more abundant and the latter showing alteration to epidote in places. Chlorite is an accessory mineral, and apatite crystals are not rare.

4 Diabase

Nyack, Rockland co. N. Y.

MANHATTAN TRAP ROCK CO.

See plate 12

This is a fine grained rock of a dark gray color used entirely for road metal and concrete. It is so fine grained that the mineral species can not be easily distinguished with the naked eye, but bright cleavage faces suggest the presence of a plagioclase feldspar.

Under the microscope the plagioclase was the only feldspar recognized. It is very basic, in part probably bytownite and it occurs in lath shaped crystals having an average length of .5 millimeter and an average width of .10 millimeter. Colorless to green augite makes up the greater part of the remainder of the section. This augite, has, in places, altered to hornblende. Magentite and other metallic grains, probably ilmenite, are also present.
7 Norite

Keeseville, Essex co. N. Y.

PROPERTY OF C. B. WHITE

See plate 13

The quarry at this locality is not at present in operation, but formerly the stone was employed as a building stone. In the quarry the stone is seen to vary considerably in texture and mineral composition. The samples which were tested are greenish in color, rather medium to fine grained and composed of green feldspar, some biotite and some form of pyroxene. A few small garnets were also noted in the hand specimen.

No thin section was cut from this rock.

9 Granite

Grindstone island, Jefferson co. N. Y.

PARRY BROS.

See plate 14

This is a fine grained red granite which from this particular quarry has been used only for paving blocks, although from other quarries on the island it has been employed as a building and monumental stone. The red color is due to an excess of pink feldspar. Light and smoky quartz are easily distinguished as are also little scales of biotite.

In thin section the feldspars were seen to be chiefly microcline with some orthoclase and an acid plagioclase. They are both cloudy and clear; the orthoclase seems to have suffered the most from alteration while the microcline remained fresh. Much quartz is present. Both muscovite and biotite are represented, and around some of the biotite scales chlorite and epidote occur as alteration products. Some apatite crystals, magnetite, hematite and other ore grains are present in small amounts.

10 Granite

Grindstone island, Jefferson co. N. Y.

KELLY & PACKARD

See plate 15

This is a coarse grained red granite which is used as a building and monumental stone. The color is due to an excess of pink feldspar, some of the crystals of which reach $\frac{1}{2}$ inch in size.
Light quartz and biotite make up the rest of the rock, with the exception of a few pyrite grains. The biotite seems to be associated with an alteration mineral which is probably chlorite.

This stone, in the thin section, shows evidences of crushing, for the quartz is considerably cracked and the feldspar, which is mostly microcline with some microperthite, is also much cracked. Micropegmatite was also noted and the feldspars show kaolinization to some extent. Much titanite, biotite, chlorite, ilmenite, pyrite and magnetite seem to be grouped together in large areas. All of these may be alteration products from a brown titanium-bearing hornblende. A few zircons and apatites were also seen in the section.

II Gneiss

Little Falls, Herkimer co. N. Y.

HALLIMAN BROS.

See plate 16

This is an augen gneiss which is being used for road metal and has been used, to some extent, in the construction of local buildings. The color is prevailingly greenish gray, though, in places, it is rather pinkish. The feldspar eyes are well defined in some places. The texture, as a whole, is rather fine.

The microscope showed that the eyes are made up of microperthite around which is a fine grained matrix of quartz and feldspar which has weathered to mica in some places. Through these large crystals of microperthite are stringers of quartz and feldspar. Green hornblende, apatites and magnetite grains were also noted in the section.

I4 Granite

Northville, Fulton co. N.Y.

NORTHVILLE GRANITE & MARBLE CO.

See plate 17

This garnetiferous gneissic granite has been quarried only on a small scale for local monuments. The color is quite dark due to the large amount of hornblende in the rock. It is rather coarse grained, though variable in texture. Green feldspar and light quartz are easily recognized and there are many large crystals of garnet, some of them reaching a size of over $\frac{1}{2}$ inch.

In the thin section the feldspar was seen to be largely a soda plagioclase, with some orthoclase which had altered in places to
mica. The quartz showed evidences of crushing. Hornblende, biotite which has altered to chlorite in places, pyrite grains, zircons and apatites were also noted and large crystals of red garnet are common in the section.

8 Sandstone

Potsdam, St Lawrence co. N.Y.

Potsdam Red Sandstone Co.

See plate 18

This is a quartzitic red sandstone, compact and even grained. The color varies somewhat and the bedding planes are quite prominent. It is extensively used as a building stone.

Under the microscope the grains appear to be well rounded; many have become enlarged by a secondary growth of silica and the original form of the grain is shown by a rim of limonite. The stone is well cemented and in some cases the grains show complicated interlocking. With the exception of a few scales of muscovite and some grains of magnetite, the section is made up entirely of quartz grains which rarely exceed .5 millimeter in diameter.

16 Sandstone

Oxford, Chenango co. N.Y.

F. G. Clarke Bluestone Co.

See plate 19

The stone from this locality, which is used extensively as a building stone, is fine grained and of a bluish gray color.

In the thin section the rock was seen to be composed of angular to rounded grains of quartz and feldspar, which in places has weathered to mica. The cementing material is mostly silica, though there is some calcite and some limonite. The texture is quite fine, the average size of the grains being .10 millimeter. A few mica scales and pyrite grains were also noted in the section.

17 Sandstone

Medina, Orleans co. N.Y.

Carson Bros.

See plate 20

This is a fine grained red sandstone which is quite uniform in texture and compact. It is widely used as a building stone.
The microscope shows that the grains, which are mostly quartz, are well rounded and encased in limonite. Some of them have become enlarged by secondary growth, thus making the stone compact and firm. Weathered feldspar and plagioclase make up a large part of the section. Some ore grains, probably magnetite and pyrite, are scattered through the mass. The texture is quite even, the grains averaging .30 millimeter in diameter.

19 Sandstone

Warsaw, Wyoming co. N.Y.

WARSAW BLUESTONE CO.

See plate 21

This sandstone, used for building purposes, has a bluish gray color, is rather loose and of a fine grain and even texture.

The rock is made up mostly of very fine subangular grains of quartz and weathered feldspar cemented together by calcite. Biotite and muscovite scales, chlorite, recrystallized quartz, some ilmenite and other ore grains were also noted in the section.

5 Limestone

Sandy Hill, Washington co. N.Y.

HIGLEY & BARBER

See plate 22

The stone from this locality is fine grained and bluish gray and is used mostly for building purposes. It is quite hard and compact and the texture, as a whole, is fairly even, though it varies somewhat to a coarser grain.

The microscope revealed more or less angular crystals of calcite cemented firmly by a fine grained cloudy calcareous material. Some rounded quartz grains and a few pyrite grains were also noted in the section.

12 Limestone

Little Falls, Herkimer co. N.Y.

P. KEARNEY

See plate 23

The stone from this quarry, which is used locally as a building stone, is light gray in color, fairly compact and, as a whole, fine grained. It is made up of dolomite rather than calcite.

The microscope showed it to be composed of good crystals of
dolomite in a cement of fine grained calcareous material and limonite. Rounded quartz grains are scattered through the section, thus giving the rock a silicious character.

13 Limestone

Palatine Bridge, Montgomery co. N.Y.

Mohawk Stone Co.

See plate 24

This limestone has been used for building purposes, but at present it is being quarried for railroad ballast. It is grayish blue in color, quite compact and hard. For the most part it is quite fine in texture, though it varies to a coarser grain.

In the thin section were seen good calcite crystals, some small grains of quartz and a few pieces of plagioclase changing to calcite, all in a fine grained material which is probably calcite mixed with more or less clay. A few magnetite grains were also seen in the section.

15 Limestone

Amsterdam, Montgomery co. N.Y.

D. C. Hewitt

See plate 25

The stone from this locality is extremely variable. The good stone, employed for building purposes, is dark gray, fine grained and fairly even in texture. However, in it are coarser layers. The poorer stone is rather black, loose, earthy and coarse. This is used for road metal.

The thin section shows the stone to be made up largely of calcite crystals in a fine cloudy material which is probably a calcareous material mixed with some clay. Some angular quartz grains and a few plagioclase grains changing to calcite were also noted. The texture is variable and there are some pore spaces. A few ore grains are scattered through the mass.

35 Marble

Gouverneur, St Lawrence co. N.Y.

St Lawrence Marble Co.

See plate 26

This is a fairly coarse grained stone of a bluish color, varying to a lighter tint, used extensively for building and decorative pur-
poses. There seem to be planes of weakness in the stone due to a slight variation of the texture.

No thin section was cut from this sample.

REFERENCES

Previous investigations of refractoriness of building stones

Effect of fire on stone as observed in conflagrations

1 Granite
Pine Island, Orange co. N. Y.
82 550° slow cooling
81 850° slow cooling
156 Flame test
83 550° fast cooling
122 Flame and water test
2 Granite

Garrison, Putnam co. N. Y.

90 550° slow cooling
157 Flame test

91 550° fast cooling
123 Flame and water test
3 Granite

Peekskill, Westchester co. N. Y.

112 550° slow cooling
114 850° slow cooling
158 Flame test

113 550° fast cooling
115 850° fast cooling
124 Flame and water test
Plate 12

4 Diabase
Nyack, Rockland co. N. Y.

116 550° slow cooling
118 850° slow cooling
159 Flame test

117 550° fast cooling
119 850° fast cooling
125 Flame and water test
UNION OF CALIFORNIA
Plate 13

7 Norite
Keeseville, Essex co. N. Y.

120 550° slow cooling 121 550° fast cooling
127 Flame and water test
9 Granite
Grindstone island, Jefferson co. N. Y.

30 550° slow cooling
32 850° slow cooling
162 Flame test
31 550° fast cooling
33 850° fast cooling
129 Flame and water test
Plate 15

Grindstone island, Jefferson co. N. Y.

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Temperature</th>
<th>Cooling Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>Granite</td>
<td>350°</td>
<td>Slow cooling</td>
</tr>
<tr>
<td>45</td>
<td>Granite</td>
<td>850°</td>
<td>Slow cooling</td>
</tr>
<tr>
<td>163</td>
<td>Flame test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Granite</td>
<td>550°</td>
<td>Fast cooling</td>
</tr>
<tr>
<td>42</td>
<td>Granite</td>
<td>850°</td>
<td>Fast cooling</td>
</tr>
<tr>
<td>130</td>
<td>Flame and water test</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Plate 16

11. Gneiss
Little Falls, Herkimer co. N. Y.

95 550° slow cooling
107 850° slow cooling
164 Flame test

96 550° fast cooling
97 850° fast cooling
131 Flame and water test
Plate 17

14 Granite
Northville, Fulton co. N. Y.

104 550° slow cooling
105 550° fast cooling
106 850° fast cooling
167 Flame test
134 Flame and water test
"aliens of
california"
8 Sandstone
Potsdam, St Lawrence co. N. Y.
61 550° slow cooling
60 850° slow cooling
161 Flame test
62 550° fast cooling
63 850° fast cooling
128 Flame and water test
Plate 19

16 Sandstone
Oxford, Chenango co., N. Y.

11 550° slow cooling
9 850° slow cooling
168 Flame test

12 550° fast cooling
10 850° fast cooling
136 Flame and water test
17 Sandstone
Medina, Orleans co. N. Y.

14 550° slow cooling
16 850° slow cooling
169 Flame test

13 550° fast cooling
15 850° fast cooling
137 Flame and water test
19 Sandstone
Warsaw, Wyoming co. N. Y.

2 550° slow cooling
4 850° slow cooling
171 Flame test

1 550° fast cooling
3 850° fast cooling
139 Flame and water test
VIRA OF
CALIFORNIA
Plate 22

5 Limestone
Sandy Hill, Washington co., N. Y.

92 550° slow cooling
94 850° fast cooling
160 Flame test
93 550° fast cooling

126 Flame and water test
12 Limestone
Little Falls, Herkimer co. N. Y.

38 550° slow cooling
40 850° slow cooling
165 Flame test

39 550° fast cooling
41 850° fast cooling
132 Flame and water test
13 Limestone

Palatine Bridge, Montgomery co. N. Y.

54 550° slow cooling
56 850° slow cooling
166 Flame test

55 550° fast cooling
57 850° fast cooling
133 Flame and water test
Plate 25

15 Limestone
Amsterdam, Montgomery co. N. Y.

88 550° slow cooling 89 550° fast cooling
135 Flame and water test
ICHA TO
CALIFORNIA
35 Marble
Gouverneur, St Lawrence co. N. Y.

22 550° slow cooling
24 850° slow cooling
183 Flame test

25 550° fast cooling
23 850° fast cooling
155 Flame and water test
University of California
INDEX

The superior figures tell the exact place on the page in ninths; e.g. 9 means page 9, beginning in the third ninth of the page, i.e. about one third of the way down.

Baltimore fire, observations on, 10*.
Buckley, experiments, 7*-8*; cited, 9*, 28*, 36*.

Conglomerates, refractoriness, 7*.
Cutting, investigations, 6*-7*; cited, 36*.

Diabase, petrographic description, 30*.
Dolomite, refractoriness, 9*.

Fire, effect on stone as observed in conflagrations, 9*-12*, 36*.
Fire tests, description, 16*-25*; on granites and gneisses, 17*-19*; on limestones, 22*-23*; on marble, 24*-25*; on sandstones, 20*-21*; summary, 26*-28*.
Flame tests, 16*-17*, 28*.
Furnace tests, 16*.

Gneisses, percentage of absorption, 13*; fire tests, 17*-19*, 26*, 27*; flame tests, 28*; locality, 13*.
petrographic description, 13*, 32*;
company operating quarry, 13*;
order of refractoriness, 28*; use, 13*.
Granites, percentage of absorption, 13*;
effects of Baltimore fire on, 11*;
fire tests, 17*-19*, 26*, 26*;
flame tests, 28*; locality, 13*;
petrographic description, 13*, 32*;
company operating quarry, 13*;
order of refractoriness, 28*; use, 13*.

Grieshaber, cited, 11*.

Limestones, percentage of absorption, 15*; effects of Baltimore fire on, 11*; fire tests, 22*-23*, 26*, 28*; flame tests, 28*; locality, 15*;
petrographic description, 15*, 34*-35*;
company operating quarry, 15*;
refractoriness, 7*, 7*, 8*, 9*, 9*;
order of refractoriness, 28*; use, 15*.

Marble, percentage of absorption, 15*;
effects of Baltimore fire on, 11*;
fire tests, 24*-25*, 26*, 28*; flame tests, 28*; 28*; locality, 15*;
petrographic description, 15*, 35*-36*;
company operating quarry, 15*;
refractoriness, 7*, 7*; order of refractoriness, 28*; use, 15*.

Medina sandstone, percentage of absorption, 27*;
fire tests, 20*, 21*.
Merrill, G. P., cited, 8*-9*, 36*.

Norite, petrographic description, 31*.

Oxford sandstone, fire tests, 20*, 21*;
percentage of absorption, 27*.

Petrographic description of stones tested, 29*-36*.
Potsdam stone, fire tests, 20*, 21*;
percentage of absorption, 27*.

Refractoriness of building stones, previous investigations, 6*-9*, 36*.

Sandstones, percentage of absorption, 14*; effects of Baltimore fire on, 11*;
fire tests, 20*-21*, 27*;
flame tests, 28*; locality, 14*;
petrographic description, 14*, 33*-34*;
company operating quarry, 14*;
refractoriness, 6*, 7*, 8*, 9*, 9*;
order of refractoriness, 28*; use, 14*.
Slates, refractoriness, 71; effects of Baltimore fire on, 114

Tests made on New York building stones, 123–288. See also Fire tests; Flame tests

Van Schwartz, cited, 95, 363

Warsaw blue stone, fire tests, 202, 21; percentage of absorption, 279
Winchell, N. H., experiments, 75
Woolson, cited, 113
Postage or express to places outside of New York State must be paid in addition to the price given. On 10 or more copies of any one publication 20% discount will be given, the buyer to pay transportation. Editions printed are only large enough to meet special claims and probable sales. When the sale copies are exhausted, the price for the few reserve copies is advanced to that charged by secondhand booksellers, in order to limit their distribution to cases of special need. Such prices are inclosed in []. All publications are in paper covers, unless binding is specified.

Museum annual reports 1847–date. All in print to 1892, 50c a volume, 75c in cloth; 1892–date, 75c, cloth.

These reports are made up of the reports of the director, geologist, paleontologist, botanist and entomologist, and museum bulletins and memoirs, issued as advance sections of the reports.

Director's annual reports 1904-date.

These reports cover the reports of the State Geologist and of the State Paleontologist. Bound also with the Museum reports of which they form a part.

Geologist's annual reports 1881-date. Rep'ts 1, 3–13, 17–date, O; 2, 14–16, Q.

In 1898 the paleontologic work of the State was made distinct from the geology and was reported separately from 1899–1903. The two departments were reunited in 1904, and reported in the Director's report.

The annual reports of the original Natural History Survey, 1837–41, are out of print.

Reports 1–4, 1881–84, were published only in separate form. Of the 5th report 4 pages were reprinted in the 39th museum report, and a supplement to the 6th report was included in the 40th museum report. The 7th and subsequent reports are included in the 41st and following museum reports, except that certain lithographic plates in the 11th report (1891) and 13th (1893) are omitted from the 45th and 47th museum reports.

Separate volumes of the following only are available.

<table>
<thead>
<tr>
<th>Report</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 (1892)</td>
<td>$.50</td>
</tr>
<tr>
<td>13</td>
<td>.75</td>
</tr>
<tr>
<td>14</td>
<td>.75</td>
</tr>
<tr>
<td>15, 16, 17</td>
<td>.40</td>
</tr>
</tbody>
</table>

Paleontologist's annual reports 1899-date.

See first note under Geologist's annual reports.

Bound also with museum reports of which they form a part. Reports for 1899 and 1900 may be had for 20c each. Those for 1901–3 were issued as bulletins. In 1904 combined with the Director's report.

Entomologist's annual reports on the injurious and other insects of the State of New York 1882-date.

Reports 3–20 bound also with museum reports 40–46, 48–58 of which they form a part. Since 1898 these reports have been issued as bulletins. Reports 3–17 are out of print, other reports with prices are:

<table>
<thead>
<tr>
<th>Report</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$.50</td>
</tr>
<tr>
<td>2</td>
<td>.30</td>
</tr>
<tr>
<td>3</td>
<td>.25</td>
</tr>
<tr>
<td>4</td>
<td>.15</td>
</tr>
<tr>
<td>5</td>
<td>.20</td>
</tr>
<tr>
<td>6</td>
<td>.15</td>
</tr>
<tr>
<td>7</td>
<td>.25</td>
</tr>
<tr>
<td>8</td>
<td>(En 5).30</td>
</tr>
<tr>
<td>9</td>
<td>.25</td>
</tr>
<tr>
<td>10</td>
<td>.25</td>
</tr>
<tr>
<td>11</td>
<td>.35</td>
</tr>
<tr>
<td>12</td>
<td>.25</td>
</tr>
<tr>
<td>13</td>
<td>.10</td>
</tr>
<tr>
<td>14 (En 5)</td>
<td>.30</td>
</tr>
</tbody>
</table>

Reports 2, 8–12 may also be obtained bound separately in cloth at 50c in addition to the price given above.

Botanist's annual reports 1867-date.

Bound also with museum reports 21–date of which they form a part; the first botanist's report appeared in the 21st museum report and is numbered 21. Reports 21–24, 29, 31–41 were not published separately.

Separate reports for 1871–74, 1876, 1888–96 and 1898 (Botany 3) are out of print. Report for 1897 may be had for 40c; 1899 for 20c; 1900 for 50c. Since 1901 these reports have been issued as bulletins [see Bo 5–8].

Descriptions and illustrations of edible, poisonous and unwholesome fungi of New York have also been published in volumes 1 and 3 of the 48th (1894) museum report and in volumes 1 of the 40th (1895), 51st (1897), 52d (1898), 54th (1900), 55th (1901), 56th (1903), 57th (1905) and 58th (1904) reports. The descriptions and illustrations of edible and unwholesome species contained in the 40th, 51st and 53d reports have been revised and rearranged, and, combined with others more recently prepared, constitute Museum memoir 4.
NEW YORK STATE EDUCATION DEPARTMENT

Museum bulletins 1887–date. O. To advance subscribers, $2 a year or $1 a year for division (1) geology, economic geology, palaeontology, mineralogy; 50c each for divisions (2) general zoology, archeology and miscellaneous, (3) botany, (4) entomology.

Bulletins are also found with the annual reports of the museum as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G 1</td>
<td>48.v.1</td>
<td>Pa'2,3</td>
<td>54.v.3</td>
<td>En 11</td>
<td>54.v.3</td>
<td>Ar 3</td>
<td>52.v.1</td>
</tr>
<tr>
<td>2</td>
<td>51.v.1</td>
<td>4</td>
<td>5</td>
<td>55.v.1</td>
<td>12</td>
<td>13</td>
<td>54.v.1</td>
</tr>
<tr>
<td>3</td>
<td>52.v.1</td>
<td>5,6</td>
<td>5</td>
<td>55.v.1</td>
<td>14</td>
<td>15-18</td>
<td>55.v.1</td>
</tr>
<tr>
<td>4</td>
<td>54.v.1</td>
<td>7</td>
<td>9</td>
<td>55.v.1</td>
<td>19</td>
<td>21</td>
<td>55.v.1</td>
</tr>
<tr>
<td>6</td>
<td>57.v.1</td>
<td>Z 3</td>
<td>55.v.1</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>56.v.4</td>
</tr>
<tr>
<td>7</td>
<td>50.v.1</td>
<td>9</td>
<td>7</td>
<td>55.v.1</td>
<td>20</td>
<td>21</td>
<td>56.v.4</td>
</tr>
<tr>
<td>8</td>
<td>53.v.1</td>
<td>8</td>
<td>7</td>
<td>55.v.1</td>
<td>22</td>
<td>21</td>
<td>56.v.4</td>
</tr>
<tr>
<td>9</td>
<td>54.v.2</td>
<td>9</td>
<td>6</td>
<td>55.v.1</td>
<td>23</td>
<td>21</td>
<td>56.v.4</td>
</tr>
<tr>
<td>10</td>
<td>56.v.1</td>
<td>10</td>
<td>5</td>
<td>55.v.1</td>
<td>4</td>
<td>56.v.1</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>56.v.1</td>
<td>10</td>
<td>5</td>
<td>55.v.1</td>
<td>3</td>
<td>56.v.1</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>57.v.1</td>
<td>10</td>
<td>5</td>
<td>55.v.1</td>
<td>1</td>
<td>56.v.1</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>57.v.1</td>
<td>10</td>
<td>5</td>
<td>55.v.1</td>
<td>2</td>
<td>51.v.1</td>
<td>2</td>
</tr>
</tbody>
</table>

The figures in parenthesis in the following list indicate the bulletin’s number as a New York State Museum bulletin.

G6 (77) Cushing, H. P. Geology of the Vicinity of Little Falls, Herkimer Co. 98p. il. 15pl. 2 maps. Jan. 1905. 30c.

G8 (84) —— Ancient Water Levels of the Champlain and Hudson Valleys. 206p. 11pl. 18 maps. July 1905. 45c.

G9 (95) Cushing, H. P. Geology of the Northern Adirondack Region. 188p. 15pl. 3 maps. Sep. 1905. 30c.

G10 (96) Ogilvie, I. H. Geology of the Paradox Lake Quadrangle. 54p. il. 17pl. map. Dec. 1905. 30c.

—-The Silurian and Lower Devonian Formations of the Schunnemunk Mountain region.

Eg7 (17) —— Road Materials and Road Building in New York. 52p. 14pl. 2 maps 34x45, 68x92 cm. Oct. 1897. 15c.
MUSEUM PUBLICATIONS

Eg12 (85) Rafter, G. W. Hydrology of New York State. 902p. il. 44pl. 5 maps. May 1905. $1.50, cloth.

M4 (98) —— Contributions from the Mineralogic Laboratory. 38p. 7pl. Dec. 1905. 15c.

Contents: Clarke, J. M. A Remarkable Occurrence of Orthoceras in the Oneonta Beds of the Chenango Valley, N. Y.
— Paropsonea cryptophylla; a Peculiar Echinoderm from the Intumescentia-zone (Portage Beds) of Western New York.
— Dictyonine Hexactinellid Sponges from the Upper Devonic of New York.
— The Water Biscuit of Squaw Island, Canandaigua Lake, N. Y.
Loomis, F. B. Siluric Fungi from Western New York.

P4 (45) Grabau, A. W. Geology and Paleontology of Niagara Falls and Vicinity. 286p. il. 18pl. map. Ap. 1901. 65c; cloth, 90c.

Contents: Ruedemann, Rudolf. Trenton Conglomerate of Rysedorph Hill.
Clarke, J. M. Limestones of Central and Western New York Interbedded with Bituminous Shales of the Marcellus Stage.
Wood, Elvira. Marcellus Limestones of Lancaster, Erie Co. N. Y.
Clarke, J. M. New Agelacrinites.
Value of Ammignia as an Indicator of Fresh-water Deposits during the Devonic of New York, Ireland and the Rhineeland.

P6 (52) Clarke, J. M. Report of the State Paleontologist 1901. 28op. il. 9pl. map, 1 tab. July 1902. 40c.

P7 (63) —— Stratigraphy of Canandaigua and Naples Quadrangles 78p. map. June 1904. 25c.

P8 (65) —— Catalogue of Type Specimens of Paleozoic Fossils in the New York State Museum. 843p. May 1903. $1.20, cloth.

Z10 (71) Kellogg, J. L. Feeding Habits and Growth of Venus mercenaria. 3op. 4pl. Sep. 1903. 10c.

En3 (13) San José Scale and Some Destructive Insects of New York State. 54p. 7pl. Ap. 1895. 15c.

En4 (20) Felt, E. P. Elm-leaf Beetle in New York State. 46p. il. 5pl. June 1898. 5c.

En5 (23) 14th Report of the State Entomologist 1898. 15op. il. 9pl. Dec. 1898. 20c.

Supplement to 14th report of the State Entomologist.

En8 (27) Shade Tree Pests in New York State. 26p. il. 5pl. May 1899. 5c.

MUSEUM PUBLICATIONS

En12 (46) — Scale Insects of Importance and a List of the Species in New York State. 94p. ii. 15pl. June 1901. 25c.

En15 (57) — Elm Leaf Beetle in New York State. 46p. il. 8pl. Aug. 1902. 15c.

This is a revision of En4 containing the more essential facts observed since that was prepared.

En16 (59) — Grapevine Root Worm. 40p. 6pl. Dec. 1902. 15c.

En17 (64) — 18th Report of the State Entomologist 1902. 110p. 6pl. May 1903. 20c.

This is a revision of En16 containing the more essential facts observed since that was prepared.

Bo2 (8) — Boteli of the United States. 96p. Sep. 1889. [50c]

Bo6 (67) — Report of the State Botanist 1902. 196p. 5pl. May 1903. 50c.

Bo7 (75) — Report of the State Botanist 1903. 70p. 4pl. 1904. 40c.

Ar2 (18) — Polished Stone Articles used by the New York Aborigines. 104p. 35pl. Nov. 1897. 25c.

Ar5 (41) — Wampum and Shell Articles used by New York Indians. 166p. 28pl. Mar. 1901. 30c.

Ar6 (50) — Horn and Bone Implements of the New York Indians. 112p. 43pl. Mar. 1902. 30c.

Ar7 (55) — Metallic Implements of the New York Indians. 94p. 38pl. June 1902. 25c.

Ar10 (87) — Perch Lake Mounds. 84p. 12pl. Apr. 1905. 20c.

Ar11 (89) — Aboriginal Use of Wood in New York. 190p. 35pl. June 1905. 35c.
NEW YORK STATE EDUCATION DEPARTMENT

— Civil, Religious & Mourning Councils and Ceremonies of Adoption. Prepared.

Ms2 (66) Ellis, Mary. Index to Publications of the New York State Natural History Survey and New York State Museum 1837-1902. 418p. June 1903. 75c, cloth.

Museum memoirs 1889-date. Q.

2 Hall, James & Clarke, J. M. Paleozoic Reticulate Sponges. 350p. il. 70pl. 1898. $1, cloth.

4 Peck, C. H. N. Y. Edible Fungi, 1895-99. 106p. 25pl. Nov. 1900. 75c. This includes revised descriptions and illustrations of fungi reported in the 49th, 51st and 52d reports of the State Botanist.

Natural history of New York. 30v. il. pl. maps. Q. Albany 1842-94.

division 1 ZOOLOGY. De Kay, James E. Zoology of New York; or, The New York Fauna; comprising detailed descriptions of all the animals hitherto observed within the State of New York with brief notices of those occasionally found near its borders, and accompanied by appropriate illustrations. 5v. il. pl. maps. sq. Q. Albany 1842-44. Out of print.

v. 1 pt1 Mammalia. 13+146p. 33pl. 1842. 300 copies with hand-colored plates.

v. 3 pt3 Reptiles and Amphibia. 7+98p. pt4 Fishes. 15+415p. 1842. pt4-4 bound together.

v. 4 Plates to accompany v. 3. Reptiles and Amphibia 23pl. Fishes 79pl. 1842. 300 copies with hand-colored plates.

division 2 BOTANY. Torrey, John. Flora of the State of New York; comprising full descriptions of all the indigenous and naturalized plants hitherto discovered in the State, with remarks on their economical and medical properties. 2v. il. pl. sq. Q. Albany 1843. Out of print.

v. 1 Flora of the State of New York. 12+484p. 72pl. 1843. 300 copies with hand-colored plates.

v. 2 Flora of the State of New York. 572p. 89pl. 1843. 300 copies with hand-colored plates.

division 3 MINERALOGY. Beck, Lewis C. Mineralogy of New York; comprising detailed descriptions of the minerals hitherto found in the State of New York, and notices of their uses in the arts and agriculture. il. pl. sq. Q. Albany 1842. Out of print.
NEW YORK STATE EDUCATION DEPARTMENT

H13 Paleontology. 12p. 2c.

Brief outline of State Museum work in paleontology under heads: Definition; Relation to biology; Relation to stratigraphy; History of paleontology in New York.

Itineraries of 32 trips covering nearly the entire series of Paleozoic rocks, prepared specially for the use of teachers and students desiring to acquaint themselves more intimately with the classic rocks of this State.

H16 Entomology. 16p. 2c.

H17 Economic Geology. 44p. 4c.

H18 Insecticides and Fungicides. 20p. 3c.

H19 Classification of New York Series of Geologic Formations. 32p. 3c.

— Map of the State of New York Showing the Location of Quarries of Stone Used for Building and Road Metal. Mus. bul. 17, 1897. 10c.

— Map of the State of New York Showing the Distribution of the Rocks Most Useful for Road Metal. Mus. bul. 17, 1897. 5c.

— Geologic Map of New York. 1901. Scale 5 miles to 1 inch. In atlas form $3; mounted on rollers $5. Lower Hudson sheet 60c.

The lower Hudson sheet, geologically colored, comprises Rockland, Orange, Dutchess, Putnam, Westchester, New York, Richmond, Kings, Queens and Nassau counties, and parts of Sullivan, Ulster and Suffolk counties; also northeastern New Jersey and part of western Connecticut.

— Map of New York Showing the Surface Configuration and Water Sheds. 1901. Scale 12 miles to 1 inch. 15c.

— Map of the State of New York Showing the Location of its Economic Deposits. 1904. Scale 12 miles to 1 inch. 15c.

Geologic maps on the United States Geological Survey topographic base; scale 1 in. = 1 m. Those marked with an asterisk have also been published separately.

*Albany county. Mus. rep't 49, v. 2. 1898. 50c.

Area around Lake Placid. Mus. bul. 21. 1898.

*Viscosity of Frankfort Hill [parts of Herkimer and Oneida counties]. Mus. rep't 51, v. 1. 1899.

Rockland county. State geol. rep't 18. 1899.

Amsterdam quadrangle. Mus. bul. 34. 1900.

*Parts of Albany and Rensselaer counties. Mus. bul. 42. 1901. 10c.

*Niagara river. Mus. bul. 45. 1901. 25c.

Oyster Bay and Hempstead quadrangles on Long Island. Mus. bul. 48. 1901.

Portions of Clinton and Essex counties. Mus. bul. 52. 1902.

Part of town of Northumberland, Saratoga co. State geol. rep't 21. 1903.

Union Springs, Cayuga county and vicinity. Mus. bul. 69. 1903.

*Olean quadrangle. Mus. bul. 69. 1903. 10c.

*Bearcraft Mt with 2 sheets of sections. (Scale 1 in. = 1/2 m.) Mus. bul. 69. 1903. 20c.

*Canandaigua-Naples quadrangles. Mus. bul. 63. 1904. 20c.

*Little Falls quadrangle. Mus. bul. 77. 1905. 15c.

*Tully quadrangle. Mus. bul. 82. 1905. 10c.

*Salamanca quadrangle. Mus. bul. 80. 1905. 10c.