VERMONT LIFE
VOLUME XVIII, NUMBER 3 • SPRING, 1964

SPRING SPECIALS
ADVENT OF SPRING 25 A scenic portfolio
SUGARING 29 The ending of winter
PLEASANT VALLEY 30 Winston Pote

PLACES
QUEEN BY THE LAKE 2 Hanson Carroll & Ralph Hill

BUSINESS AND PEOPLE
INVISIBLE X 100,000 13 Murray Hoyt, on the Ladds
TWO WHEELS AND A BODY 52 Joseph Noonan, on the Hinesburg carts

RESOURCES
WATER POWER 19 John Harris, on dams old and new

YESTERDAYS
FIVE CENTS TO EVERYWHERE 46 Albert Spaulding, on Green Mtn. trolleys
ST. ALBANS TRAINSHED 58 David Plowden, a final record

NATURE
RETURN OF THE WHATZIT 54 Ronald Rood, on the woodcock

DEPARTMENTS
VL REPORTS 42 On Paul Aschenbach and books
FOOD 44 On rhubarb pie
MYSTERY PICTURE 57 Number 29
POST-BOY 57 Notes on the passing scene

Left: Springtime at King Street dock, Burlington’s front door on Lake Champlain.
HANSON CARROLL

Covers: Front—Malcolm Piper Farm, E. Barnard, JOHN VONDELL;
Inside Back—Aschenbach Sculpture, Burlington, LYNN WATT
Back—Moss Glen Falls, Granville Gulf, E. L. Gockeler.

Philip H. Hoff, GOVERNOR
Published quarterly at Montpelier, Vermont, by the Vermont Development Department.

Per Copy—50c; Per yr.—$2.00 ($3.50 for 2 yrs.; $5.00 for 3 yrs.)—Foreign subscriptions add 40¢ per year.

© Copyright 1964 by VERMONT LIFE Magazine. Second class postage paid at Montpelier, Vermont and additional mailing offices. Printed in U.S.A. by The Lane Press, Burlington, Vt. Published Mar. 3, 1964
Queen by the Lake

by RALPH NADING HILL

Photographed by HANSON CARROLL

Perhaps the most durable statement ever made about Burlington as a place was that of the noted author William Dean Howells, who told Publisher Henry Holt that it is the most beautiful in the world. Holt's former home, a Georgian mansion at the crest of elm-shaded terraces rising from the harbor, still commands a transcendent panorama: to the south an outlook upon a green valley rippled with hills, to the west beyond the blue lake
the princely caravan of the Adirondacks, and on the eastern horizon those comfortable, rounded sentinels of the Green Mountains, Mansfield and Camel's Hump.

Among New England cities Burlington is neither old, young, nor without tradition, for the French and Indian Wars, the Revolution and the War of 1812 passed this way. That is why settlement did not begin until the late seventeen hundreds. Burlington's site at the lake's widest point, and at the western end of a narrow riverpass through the Green Mountains to the Connecticut Valley, was once envisioned as the capital of the United States by Vermont's founding fathers, assuming their leader, General Ethan Allen, could conquer Canada, which he tried but failed to do. In 1789 the Hero of Fort Ticonderoga was buried on the Burlington ridge overlooking his Colchester farm.

In the beginning Burlington comprised two tiny settlements, one at the lakefront called Burlington Bay, and the other at the falls of the Winooski River, the northern boundary of the town. The forest between them retreated gradually until the two communities, dominated by the port, became one. Until the railroad era it was the lake that bore the people and their goods to and from Burlington. The opening of canals south to the Hudson and north to the St. Lawrence, and the influx of immigrants into the United States by way of Quebec, Montreal and Lake Champlain, long imparted to Vermont's fresh water harbor the salty flavor of maritime ports.

The Queen City shows many faces in her buildings and streets. Stores, banks, hotels long ago migrated up the hill from the now industrial waterfront, leaving behind the facades of early Yankee buildings, serving today as wholesale warehouses and multiple-family dwellings. Since the city can expand in three but not four directions, selected blocks, valuably located near the lake, are to to be transformed through urban renewal to serve new needs. Above the business section and flanking it to the north and south are the elm-arched residential streets. The many early, mid-and late Victorian mansions on the hill, with occasional survivors of the Federal and Greek Revival periods, built from the profits of the port in its heyday, are used now as University of Vermont fraternities and sororities, lend the hill section of the city its character. Modern buildings are adding new patterns to the architectural kaleidoscope; recent developments east, north and south of the city attest to Greater Burlington's status as one of the fastest growing communities in New England. Fifty thousand people, one fourth of them beyond the city boundaries, live and work in the compass of a few miles.
For generations Burlington was Yankee in character, yet for over a century people of Irish extraction and French (the Quebec border is only forty miles away), have been strongly represented. Change was vastly accelerated by the Second World War, which brought new industry, new people. Locally owned businesses began to yield to chain stores and eventually to large shopping areas on the flanks of the city, although Church Street remains the center of commerce. As the educational, medical, banking, power, retail, insurance, federal office, trucking and service nucleus of a wide area; as a housing and feeding center for Vermont's burgeoning recreation industry, the city has achieved an important diversity. Although much remains of the old, more of the new is apparent each day.
The University of Vermont, with its almost 4,000 liberal arts, medical, engineering, agricultural and graduate students, was founded in 1791 by Ira Allen with a large gift of land on the hill crest, which the university dominates as it does the cultural affairs of the city. Apart from the invigorating atmosphere imparted by the students, and the financial importance of a large educational enterprise, other advantages accrue to the city. The University’s Lane Series features many national attractions of the performing arts. Champlain, a business college, Trinity, a Catholic college for women, and St. Michaels for men, across the river, not to mention numerous public and parochial secondary schools, add to education’s weight and influence in the busy life of the community.
headquarters for far-out dancing styles. A focal point on the University of Vermont campus is Waterman Building.
Former mayor, now Postmaster John Burns.

Ferries of the Lake Champlain Transportation Company tie up at city's main,

Free Press Publisher Warren McClure, and Co-Publisher David Howe (right).
Lumber was the foundation of the port and the city. Many of the older structures of New York and its environs must have come from the original forests of the Champlain Valley, which were dressed at Burlington. But the forests of lower Canada, towed south from Quebec in rafts to be dressed in Vermont and forwarded to metropolitan markets by rail, steamer and canal boat, made Burlington one of the largest lumber ports in the world in the late nineteenth century. Today one of its two lake businesses is oil, brought by tidewater tankers and pumped ashore for wide distribution. Tourists are the other commodity, 250,000 yearly over the nine-mile water gap between New England and New York by way of the Burlington-Port Kent ferries. It is curious that a site selected during the blazed-trail era should serve so well today: the new Boston-Montreal throughway touches the city; airlines from metropolitan New England and northern New York cross here. With the state's largest newspaper, three radio stations and only television channel, Burlington serves also as Vermont's communication headquarters.
One of city’s old and still-busy industries, Vermont Spool and Bobbin, makes wooden turnings.
Burlington, the City is not, and never will be, a great, smoking, industrial complex. Its background is one of diversification, of stability and yet of change. Some of the old enterprises survive, but again there is much more of the new. General Electric's missile and armament department, while large, is one of precision, as is the modern plant of International Business Machines in nearby Essex. The city makes cereal, fibers, processes maple syrup, fabricates steel, ovens and can openers; it desalinates water in an experimental plant; its sizeable printing industry produces Vermont Life.
The right proportions of its many qualities is what satisfies its natives and attracts many newcomers to Burlington. It is large enough to boast the conveniences of a large city, yet small enough so that access to them is easily gained. Its natural surroundings are not smothered by straggling, strangling suburbs. The lake is west, the Green Mountains are east; north and south lies a fertile open valley. The ulcerous pace of large cities has changed many minds since the Second World War. Therein lies the answer to the presence of so many medical specialists, renowned in their fields, at the University, the Mary Fletcher and DeGoesbriand hospitals. They were looking, they say, for a New England city of between twenty-five and fifty thousand people, with a university, an A-rated medical center, school and hospital where they could teach, practice and conduct research. They were seeking a place with character, tradition and concern for culture. Camping, boating, fishing, hunting and skiing were for their young families indispensable attractions; mountains and a lake were vital. Such reasoning must partly account for Burlington’s growth, although other factors may be more compelling. Upon the completion of the throughway the city will become, even more than now, the pausing point for tourists and travelers from eastern and southern New England, and those east-bound from the Adirondacks and points west. Many semi-permanent residents, of course, belong to the summer population. At the approaches to the city, at the moment, are thirty motels, whose livelihoods are helped by the Shelburne Museum, a national attraction, and by such winter meccas as Stowe, Mad River Glen, Jay Peak and Sugar Bush, scarcely an hour away.

It is difficult to judge why one community thrives and another dies, for the destiny of a city, like that of an individual depends on intangibles. Part New England and part Vermont, Burlington is vigorous, progressive, stable, peaceful and reflective. The traveler across the English Channel can be no more surprised at the utterly different atmosphere on either side than he who crosses Lake Champlain from New York to enter the parlor of the Queen by the Lake.

Handsome old Unitarian church (left) presides over bustling Church Street. Below is scenic Battery Park at dusk.
Invisible x 100,000
A FACTORY IN THE WOODS HELPS SCIENCE STUDY THINGS TOO SMALL TO SEE.
by MURRAY HOYT
Photographs by JOHN F. SMITH

You turn off the Burlington-Malletts Bay road at Township Road 30, then 32, which promptly deteriorates into three dirt roads, one car width, leading into a fairly deep woods. Follow the middle one and you’ll come to a clearing. In the clearing, instead of the log cabin you might expect, there’s a low, permastone and cement-block building.

From it a man is loading packages, some of them astonishingly small. One, marked to travel by air, has on it an address in Thailand.

“We’ll take it to the airport today, Monday,” the man tells you, “and it will be delivered in Thailand on Friday.”

“Won’t the postage or express on so small an article cost more than the article itself?”

The man smiles at your ignorance and says, “Hardly. This is a high temperature unit, an accessory for an electron microscope. The price is $3800.”

And that’s your introduction to Ladd Research Industries, Inc., which works with tiny things; infinitesimal things, many of them invisible to the naked eye. Things so small that, if a human whisker—the regular kind the males in your family scrape off every day—were magnified to the same extent, that whisker would be fifty feet in diameter. Not fifty inches mind you; fifty feet.

They build that high temperature unit to allow the operator of an electron microscope to view a millionth-of-an-inch specimen at 2800 degrees Fahrenheit, and in addition they manufacture a low temperature unit which, by using liquid nitrogen and a shaft which conducts cold, shows the operator his specimen at about 350 degrees below zero. In all, the Ladd Laboratories list some 200 items in their catalog, for the most part electron microscope accessories. Of these they manufacture about 70 themselves there at the plant.

In addition to their manufacturing, the company does micro-welding and micro-drilling. They can drill thirty holes side by side across a reasonably coarse human hair. Thirty! That, my friends, staggers the imagination.

On a fee basis, they also do research on other people’s problems. All sorts of problems, but mainly in the fields of medicine and industry. In oil research they can actually see individual particles. In carbon black they can tell you, for instance, by examining a particle a millionth of an inch in size, what’s wrong with the way you’re running your furnace. They have, for the government, examined the surfaces of nose cones before they went into orbit, and after they returned from outer space. In medicine they have made pictures of the T.B. bacillus, the smallpox germ and other germs.

In addition to all this, they teach. They train new electron microscope owners. And since this instrument is not at all like the conventional microscope (some cost $40,000 as against $750 for an ordinary light microscope, and are about the size and shape of an organ console) there aren’t as many of them as you might think. These new owners or operators learn how to handle the copes and mount specimens. This alone is unbelievably complicated. At the time I was there Mrs. Ladd was training a scientist from the Orient. Because of the customs in his native land this man had done very little of his own laboratory work. He now had the difficult tasks of developing the manual dexterity to do this complicated, delicate work. Teaching him the delicate moves necessary was a real challenge but the end result was a great satisfaction.

In charge of all this minute-area activity are the physicists William A. Ladd and his wife, Margaret W. Ladd. Mr. Ladd is rather short and compactly built. He has that delightful trick of speech which is common to all non-French-area Canadians, of pronouncing “out” with an “oat” flavor when he speaks rapidly. Not only is he versed in laboratory physics, but in addition he spent about two years in machine work. He therefore has the rare ability to translate his ideas into metal.

Mrs. Ladd, too, has a combination of abilities. She it is who runs the business end of the enterprise. Yet because of her training in physics she understands completely, and helps with, all the facets of the operation. She is trim, attractive, with a very pleasant manner indeed. The Ladds were trained at the University of Toronto under Dr. E. F. Burton.

Dr. Burton had brought the idea of an electron microscope back with him from Germany about 1937. Under his direction the first one was built on this continent. Mr. Ladd built the second one as the basis for an M.A. degree. The Ladds brought it across the Canadian border with them in 1941. Since it operated at a voltage of 85,000, and had a specially-designed, high-capacity power supply, the unininitiated, wandering where he was not supposed to be, could be knocked across the room without half trying.

In addition, the home-made instrument was cumbersome, so the
Ladds replaced it with a Dutch commercial model, a Phillips, to eliminate some of their maintenance and engineering problems.

No reader of this article could possibly be more ignorant about the electron microscope than I was when I arrived at the Ladd plant in Colchester. On the theory, though, that someone else (not you of course but someone) might be just as ignorant about it, I'll try to explain it briefly. I would much appreciate it if all physicists would, for the next few paragraphs, go someplace and have a cup of coffee and a light snack. This explanation is not for them; it's strictly for those like me who are, to put the most charitable face on it, more versed in other fields.

The electron microscope has two main advantages over the light or ordinary microscope. It can easily enlarge objects up to 100,000 times, while the best the light microscope can do is about 3,000 times. But more important than that is the fact that items seen with it, or pictures taken with it, will sharply define materials and objects which wouldn't even be visible in a light microscope.

This is because ordinary visible light, both natural and artificial, travels in "coarse" waves. The wavelength is the distance from one wave crest to the next or one wave trough to the next. This is fine for ordinary things, but for microscopic things, not so good. It's like the Queen Elizabeth and a rowboat on a stormy sea. You look out across the huge waves and you will always be able to see the Queen Elizabeth, but if the rowboat is in a trough between two waves, you can't see it. But if you replace "coarse" light waves with an electronic "ripple," the ocean becomes a quiet pond, and the rowboat is in clear view.

The shortest wavelength of visible light is about 4000 Angstroms (250 million Angstroms make an inch) but electron waves are only about five one-hundredths of one Angstrom. As a basis of comparison, then, if electron waves were an inch long, light waves would be nearly a mile and a quarter from crest to crest.

So, as you've by now realized, for illumination the electron microscope uses electrons instead of the natural light of the ordinary microscope.

This is how it's done. Electrons ordinarily whirl about in orbit inside an atom at speeds of from ten to fifty-thousand miles a second, a speed that even some teenage drivers would envy. But if enough heat or other energy is applied, under some conditions they can be freed from their atom orbit. Tungsten electrons under heat revolve faster and faster around the nucleus of their atoms until they fly off into space and are permanently lost to the atom.

The electron microscope frees electrons from heated tungsten wire at its base. It focuses them by bending their line of flight with magnetic coils set in each side of the tube, just as the image of a television set is focused. They pass through apertures, and through the specimen if it is thin enough. And the camera or fluorescent screen at the end of the tube shows the specimen in extremely sharp detail and magnified to a fantastic degree.
There. You physicists can come back now. Since whole books could be (and have been) written explaining the electron microscope, those few paragraphs are like trying to explain baseball in fifty words to your Aunt Tilda who’s never seen the game and doesn’t want to.

I’ve tried not to confuse you by telling you that, to have the microscope function well, your voltage must remain absolutely constant. Or that the whole process must go on in a vacuum. If air molecules were present, they would be so much bigger than the electrons that these little particles, even as excitable as they are, couldn’t get through. It would be like trying to shoot a rifle bullet through a dense forest. The specimen you want to examine is inserted in a holder that looks a little like one of these fancy new screwdrivers with a wheel handle. The tiny mounted specimens fit flatways into what would be the business end of the screwdriver. When the holder is inserted into an air lock in the tube, it lets a bubble of air in, which pumps must remove before it can be examined. The voltage regulating equipment, and the three pumps that get rid of the air in the tube, to some extent explain the size of the microscope console.

In the beginning, of course, there were many many things which the electron microscope could not examine. Remember, the specimen must be thin enough for the electrons to pass through. And there were, too, many things which it could examine but whose images were difficult to interpret, because there was no one with the backlog of experience.

That’s where the Ladds and others like them came in. They learned from hours, days, weeks, years of experience how to interpret what they saw. And they began to devise ingenious ways in which those unexaminable items could be examined.

For instance, a plastic replication tape was devised. You pressed this against, say, the surface of a nose cone. You pulled it off and it retained the imprint, (the replica) of that surface. But the tape was still too thick for the electrons to pass through, so a scientist put the tape in a vacuum, vaporized carbon between electrodes, which coated the tape. The tape then was extracted with a solvent, and the transparent film of carbon was left. That could be examined, and it held detail which was the same as the original surface itself.

“The replication tape,” Mr. Ladd told me, “has made the electron microscope an instrument of the field.” Unlike Mohammed, you cannot take the microscope to the mountain. But with the tape, you can take the mountain to the microscope which is far far better. Tapes can be sent through the mails to the Ladds for analysis, and the microscope pictures and the findings can be sent back, still by mail.

For fifteen years both Mr. and Mrs. Ladd worked in the carbon black field. It started during the second world war with the attempt to get a good synthetic rubber tire. As time passed it became necessary to see certain types of specimens under high heat. Mr. Ladd designed a high temperature holder. While under extreme heat he wanted to flow gas over the specimen and see what would happen. He added a hair-like tube to the unit to accomplish this. Personally I needed a small reading glass even to see the tube. The low temperature unit came into being for those same reasons of need. In rubber work it became important to see how and why a crack would begin in a car tire. So Mr. Ladd built a unit that would stretch a rubber sample right there in the microscope. This unit the Ladds sell to microscopists in the rubber and other industries.

New people owning microscopes needed special types of prepared specimens to test the sharpness of image and also the exact magnification of their instruments. These resolutions the Ladds began to make up and sell for $25 each. When a customer complained about paying that much for an item about an eighth of an inch in diameter they told him,
“You’re paying for our abilities.”
He said there’d be nothing to stop him making his own. The Ladds agreed. But about three months later he ordered three more, which they interpreted as an admission of failure on his part.

A need opened up, too, for very fine, high-quality apertures through which the electrons pass. This was a micro-drilling problem. The Ladds began to produce apertures. They now produce them for all makes of electron microscopes.

They started in the business of producing accessories and selling research, on Long Island. In 1958 they wanted to move, and they wrote all the New England states. They threw several replies in the waste basket at once—these brusquely told them what requirements they’d have to meet and what labor’s demands would be if they moved to that particular state, and offered no constructive help.

But they received, too, helpful letters from other states. In Vermont, the Development Department and the Greater Burlington Industrial Corporation met them, showed them factory sites, helped in getting answers to basic questions.

The decision finally rested between New Hampshire and Vermont. The Ladds chose Vermont and the Burlington area because they liked the physical surroundings of river, lake and forest. The clean, clear air they felt was a delightful change. There was low relative humidity and there were moderate summer temperatures, both of which were important to the manufacture of some of their products. But the clincher was that here—of all things—they could obtain from a local supplier liquid nitrogen, used in certain operations, in a matter of minutes.

Too, the University of Vermont and its College of Medicine were located nearby and that gave them the usual advantages of college-town living, plus a potential of college trained employees. It could, too, provide further educational opportunities for their employees if needed. In fact Mr. Ladd is right now, in his “spare” time, taking the necessary work at the University of Vermont to finish his doctorate, a project which was interrupted by that search for a better synthetic rubber to help with the war effort many years ago.

The plant in the woods was built for the Ladds according to their specifications. They were amazed at the integrity of the contractor. Mrs. Ladd told me, “It must be one of the few areas where a good building can be put up without constant supervision.”

She continued, “We moved everything to Vermont. We needed quiet, pleasant surroundings, mail, express, good labor. It turned out to be all that we had hoped it would be. But we received a delightful and unexpected bonus in the people.”

I asked Mrs. Ladd what she meant by that.

“The people here who applied for work seemed actually to be interested in what they could do for us.”

She explained that she was used to people who wanted to know first how little work they could do for how much pay; then how few hours would be required and how much vacation they’d get. “The people here actually seemed interested in doing an honest day’s work for a day’s pay.”

Mrs. Ladd told about one employee who came to her in the early days in Vermont, when the financial going was very rough indeed, and said, “Mrs. Ladd, we’re all of us determined that this will be a success.”

“Very often in the evening,” she went on, “our people come back here to the plant to finish something they started during the day, or to get on top of some knotty problem. They haven’t been asked to come. They just come. And they don’t necessarily even sign the book; they’re not looking for overtime. They’re just interested in doing a better job.”

The Ladds hired ordinary people. They hired the best that applied, with education or work backgrounds in at least parallel fields which indicated abilities that the Ladds’ training
could exploit. They now have sixteen on the payroll, fourteen on the first shift, two on the second.

There is anything but a rigid employer-employee relationship in the plant. The Ladds are proud that their people are growing in ability-stature constantly. The employees are encouraged to work on better and simpler ways of doing things. "They know it's to their financial advantage to do so." Customers often suggest modifications in the products, and then either Mr. or Mrs. Ladd and the staff work them out.

You feel a quiet and intent atmosphere. Even after all these years the Ladds find the problems that come to them in the mail each day, exciting, fascinating. A lot of this rubs off onto the staff. When recently they came into possession of an aperture sold by a competitor (apertures must be perfect) the staff, of their own accord, compared it with their own and there was much clicking of tongues at the imperfections. These imperfections, they seemed proud to know, they would not have tolerated in their own product. Again, that pride of workmanship.

There is the small room which contains the microscope, around which their activities center. There is a machine shop with 4 lathes, 1 milling machine, and a surface grinder among other pieces of equipment.

There is a room where the microdrilling and the micro-welding are done. Here there are light microscopes and magnifying glasses of several kinds under which much of their work is carried on. It was in this room that I was handed a pair of tweezers and a magnifying glass. The tweezers in turn were holding a human hair with a drill broken off in it. I could see the hair with the naked eye, but not the piece of drill remaining in it even with the glass. The tweezers had been handed me on the theory that possibly by holding both the hair and the glass I could better bring everything into focus.

This was a grave error. Suddenly the tweezers in my inept fingers didn't contain the hair any more. Mr. Ladd, Mrs. Ladd, the drill operator and I were all down next to the floor, our heads close together, looking for that hair. We never did find it. Try looking for a single short hair on the floor sometime. Everybody was very nice and polite about it, but now I know how a conscience-stricken bull feels in a china shop.

There is a specimen preparation room and a dark room for developing and printing and enlarging. There are the business offices, the reception room, and other appurtenances of a going business concern. There is, finally, a shipping room. It's not very large; for the tiny items that are shipped from it, it doesn't need to be.

Most of the product is shipped by mail, airmail and parcel post. It's one of the few plants in the country that can ship a sizable part of its product by letter. Only the cabinets which the Ladds sell for the storage of photographic negatives taken in the electronic microscope, are bulky enough to be shipped by truck. No huge trailer trucks or railroad cars are being moved to the doors of this plant to carry away the finished product. Often it's only a small passenger vehicle headed for the Post Office, or possibly the airport.

The Ladds are delighted with Vermont and their own particular area. And the area is delighted with them. There's no belching smoke, no soot from this plant. No noise. No army of strangers coming, for whom more schoolroom space must be built, more services of all kinds provided. Yet new money is being pumped into the area, money from Europe and other far-away places which, without this plant, Vermont would never see. It comes close to the impossibility of having your cake and eating it too.

And as for the future, the Ladds plan to expand in whatever area the demand for their services exceeds their present ability to handle it. They plan to invent and manufacture new microscope accessories as the need arises. They have, for instance, designed a special camera for a Japanese electron microscope which previously had no film camera. They'll soon begin manufacturing this article. They were disappointed in the accessories they had hoped to get at a recent convention. "I guess we'll just have to invent and make those things ourselves." They'd like to expand into X-ray, spectroscopy and other fields.

They sell direct, without dealers. They do a little advertising in highly specialized trade publications. They plan to advertise their custom micro-drilling a little more, a field that is increasing rapidly and would increase more, they feel, if more of the right people knew such a service was available. They plan, when money and time permit, to add refinements and possibly a little landscaping to the outside of their building and the grounds. But there's no hurry about that.

They intend to grow with the growth and refinement of the electron microscope. They intend to continue to work with fantastically minute things, fighting as Mr. Ladd puts it, "For a two thousandth of an inch." They intend to settle into the community and be an integral part of it.

And sometime they plan to take a vacation. They've never had a vacation, not one, since they went into business in 1955. So this past fall they decided to take one. They reached their destination. Mrs. Ladd came down with acute appendicitis, was operated on then and there. The planned vacation time was spent in a hospital and a bed, recuperating. Upon her return to the plant people all wanted to know how she had enjoyed her vacation. "A fine vacation that was."

But then she adds wistfully, "Sometimes, though, we're going to take one, even if it's only a microscopic one."

18 • VERMONT LIFE
Numberless small brooks coursing the hillsides were the cause of the small, scattered settlements which persist today throughout Vermont. First came the grist and then the sawmill on the easily-dammed streams, and at once followed the cluster of houses, the hamlet at “the falls.”

In its day the little dam provided many a small boy with a cool swimming hole, a place to fish and with game to trap and shoot. Most of all it supplied the direct power.
to run small industry. In this way it established the pattern of rural Vermont. The big rivers were too hard to dam and the mills too small in those not-so-distant days when water so abounded that it was thought of little value in itself.

While most of the mill ponds today are silted in, and the dams serve only as a picturesque backdrop, Vermon ters are laboring to improve their water’s quality, to broaden its uses and to stabilize its flow. Big dams to control water in vast quantities are built for flood control and electric generation, but with multiple purposes in mind, too.

The state’s greatest power area is the interlocking complex on the Connecticut River, beginning with the Moore dam, New England’s largest, at Waterford. This multi-dam system has the intricate problem of maintaining fairly equal power generation (and therefore water use) throughout a year in which April brings floods and September just a trickle by comparison.

For a few hours a day, too, electric demands are high,
Vermont Route 30 skirts the side
of the recently built Townshend Flood Control Dam. Just below the massive stone dam is the historic Scott covered bridge.
while late at night they drop. This leads to fluctuating water use again. So one dam’s use of the water and its generator output, starting upstream, must be regulated and integrated with the next one below. The dam at McIndoe Falls, for instance, serves largely to equalize the flow coming from the big Comerford dam upstream, and prepare it for the dam below.

Along the Connecticut’s tributaries lie the major Vermont flood dams, part of the Connecticut River Flood Control Compact, like those on the Winooski built primarily to even out the flow in flood conditions.

Besides the huge Ball Mountain at Jamaica and the Townshend flood control dams another may be built upstream on the West River, at The Island in Landgrove. Not far from the new North Springfield dam on the Black River another structure is planned for the Williams River at Brockway Mills and a third on the Saxtons River at Cambridgeport. The new North Hartland Dam alone will control the Ottauquechee’s waters, and on the big White River basin a large dam is planned at Gaysville. Way to the north, on the Moose River, a dam is planned at Victory.

All or most of these flood control dams have small, permanent lakes for swimming, boat launching sites and fishing. They also are providing waterfowl habitat and have picnic and in some cases camping facilities.

Complementing the big control dams are the linked smaller dams planned under the Small Watersheds Act. Such are three projected for the Neshobe River near Brandon. Part of the picture, also, are hundreds of new farm ponds largely built under Soil Conservation auspices. Besides helping to enhance the recharging of ground water and supporting wildlife, they provide individual farms with stock watering, a place for swimming, fishing and with fire protection.

Water and its planned uses are being recognized as one of the greatest natural resources of this relatively “wet” state, so blessed with ample supply. The day may even come, some say, when Vermont’s waters will be a major export, a commodity too valuable to use mainly for power or just for enjoyment.

JOHN HARRIS, who filmed this feature on Vermont’s old and new dams, is a former New Yorker who moved to East Jamaica, Vermont in 1961 to become a full-time freelance photographer. After graduating in 1955 as an aeronautical engineer from Rensselaer Polytechnic Institute he served four years with the U.S. Air Force, and then was associated for two years with a New York aircraft engineering firm. In Vermont he attended the Country School of Photography in South Woodstock.

These photographs were taken with a 4 x 5 Linhof camera using 90 and 150mm lenses. Some were taken with a Rolleiflex. Ektachrome Type E-3 and Panatomic-X films were used for the series.
April Days

At last there is full and complete assurance of spring, in spite of the baldness of the woods, the barrenness of the fields, bleak with sodden furrows of last year’s ploughing, or pallidly tawney with bleached grass, and untidy with the jetsam of winter storms. And the wide-strewn litter of farms in months of foddering and wood-hauling. The song of the brooks has abated something of its first triumphant swell, and is often overborne now by the jubilant chorus of the birds.

We shall not find it unpleasant nor unprofitable to take to the woods now. . . The scraps of moss, bark and twigs with which the last surface of the snow was obtrusively littered lie now unnoticed on the flat-pressed leaves, an umber carpet dotted here with flecks of moss, there sprigged with fronds of evergreen fern, purple leaves of squirrel-cups, with their downy buds and first blossoms. Between banks so clad the brook babbles as joyously as amid all the bloom and leafage of June,
Sugarhouse in Readsboro—JOHN HARRIS.
After all, sugaring is more than a business, and if these scenes don't quite match the modern methods of maple producing, they record something else. These are the ways that many Vermont farmers have followed, almost unchanged, for eighty years. But it isn't just being old-fashioned. Part of it is the plink of sap in buckets, the nostalgic view of straining horses, and the smell of boiling sap mingled with pungent wood smoke.
SPRING SUGARING IN
Pleasant Valley
RECORDED FOR VERMONT LIFE
IN COLOR BY PHOTOGRAPHER
WINSTON POTE

This sugaring scene was filmed by Winston Pote last March at the George A. Barrett place in Underhill. In the background, to the east, is the northern and highest elevation of Mt. Mansfield. The photograph was taken with a 5 x 7 Linhof camera with 7 1/8-inch Bausch & Lomb Protar convertible lens, 1/25th-second at f22 on Ektachrome E-3 film.

PRINTS FOR FRAMING

This is the third in a series of large seasonal color photographs being published by Vermont Life. Unfolded prints of these scenes, carrying no backing printing, are available at 60c each, plus 20c per order for postage and handling. Previously published and shown below in black & white reduction: Autumn, First Snow on Camel's Hump, Huntington—Stephen Warner; Winter, Burke Hollow—Winston Pote.
Hanging buckets in West Dover.
Sugaring at Sheffield—WINSTON POTE.

SPRING 1964 • 35
Advent Of Spring
Photographs by Sonja Bullaty & Angelo Lomeo

Here, as does no other season, it belongs to the children.
Here its harbingers are a hoop, a bike, or Run Sheep Run.

Hie away, hie away
Over bank and over brae . . .
Hie to haunts right seldom seen, lovely, lonesome, cool and green,
Over bank and over brae,
Hie away, hie away.

SIR WALTER SCOTT
Advent of Spring

and catches a brighter gleam from the unobstructed sunbeams. . .
Never sweeter than now, after the long silence of winter, do the birds’ song sound. . .
The grateful odor of the warming earth comes to your nostrils; to your ears, from every side, the sounds of spring; and yet you wait for fuller confirmation of its presence. . .

May Days

The lifeless dun of the close-cropped southward slopes and the tawney tangles of the swales are kindling to living green with the blaze of the sun and the moist tinder of the brook’s overflow. . .
The gray haze of undergrowth and lofty ramage is turning to a misty green, and the shadows of opening buds knot the meshed shadows of twigs on the brown forest floor, which is splashed with white moose-flowers and buds of bloodroot, like ivory-tipped arrows, each in a green quiver, and yellow adder-tongues bending above their mottled beds, and rusty trails of arbutus leaves leading to the secret of their hidden bloom, which their fragrance half betrays.
Marsh marigolds lengthen their golden chain, link by link, along the ditches. The maples are yellow with paler bloom, and the graceful birches are bent with their light burden of tassels. The dandelion answers the sun, the violet the sky.
Blossom and greenness are everywhere. . .
Sun and sky, forest, field and water, bird and blossom, declare the fullness of spring and the coming of summer.

from IN NEW ENGLAND FIELDS AND WOODS by Rowland E. Robinson, 1896
One day a dozen or more years ago, a young man who was then living in East Randolph traveled south through the pleasant Vermont valleys to visit me here in Landgrove. What he wanted was to find out if there was anything he could learn from me about forging wrought iron. I showed him the Rowen Forge, and we talked about the materials and the tools and the techniques of our trade, and then he left. Since that day I did not see Paul Aschenbach again, although I kept hearing more and more about him and his work, until one bright sunny day recently, I went to visit him at his studio and workshop in East Charlotte.

The day before I had visited the campus of the University of Vermont where his latest and most monumental piece of sculpture stood in front of the Bailey Memorial Library. Before viewing this controversial work, I had studied the single piece of his sculpture that was on exhibition at that time at the Fleming Museum. This was a wrought iron Christ on the Cross which stood about eighteen inches high. It was a pure and somber figure, a splendid example of forging and forge welding, but more than that, of the power the true artist possesses to evoke feelings which transcend the trite theme and the commonplace medium.

The fifteen-foot work made of shaped bronze sheets brazed together, which stood in the morning sunlight on its slate pedestal surrounded by a scraggy lawn of closely clipped ragweed in front of the new and functional library building, was quite another matter. Here one received a jolting impact; the first response was bewilderment. Then there followed a recognition of the sincerity of the artist and the force and power of the figure; but what was it? It seemed like the trunk of a tree with four clumsy duct-like branches rising from its crotch, yet it was not; parts of the human body emerged, but they did not add up to the figure of a human being; a pointing hand and a human leg appeared and in back a hand clutching a scroll. There were other symbolic shapes besides these whose meaning I could not fathom. All of these were apparent to me, but they did not answer my questions; I felt as though I were in the presence of something disjointed and de-humanized; I could not help but think of that somber landscape evoked by T. S. Eliot in “The Waste Land”—was this the dead tree which gave no shelter?

“What are the roots that clutch, what branches grow
Out of this stony rubbish? Son of man,
You cannot say, or guess, for you know only
A heap of broken images, where the sun beats,
And the dead tree gives no shelter, the cricket no relief,
And the dry stone no sound of water...”

What irony if the creation which was supposed to symbolize the aspirations of man and his search for knowledge and understanding betrayed the artist, and instead revealed to the beholder the dreariness of life; showed him that the once meaningful images were now broken and unintelligible, that the sound of the cricket on the hearth no longer had the power to comfort; that in truth there was no shade in this, the waste land.

On the following day, with my mind still filled with doubts, I headed for East Charlotte. After losing my way twice I finally crossed over the brook through an ancient covered bridge, turning left up a steep twisting tree-shaded lane, coming at last to the end of my journey.

Paul Aschenbach is still a young man, articulate and creative and brimming with energy. His days are filled with teaching at the University, of working on commissions, and, in-between-times, working out new designs in both wrought iron (actually mild steel) and in bronze sheets, for pieces which are to be exhibited later in a New York gallery. He grew up in Pittsfield, Massachusetts, and after time at the Rhode Island School of Design he worked his way up through the Berkshires into the country he soon came to love best of all, Vermont. He said, “I found the places I liked best in the world were like this, so why not have the real thing?” In the meantime he had worked with the sculptor Randolph Johnson in Deerfield for three years, where he became interested in the idea of sculpturing in iron. Later he studied in Philadelphia with Ukrainian craftsman I. Marshall.

This is a young man with a social conscience, which he sometimes finds troublesome, for he must have justification for his work. He said at one point: “What a ridiculous thing for a grown-up man to be doing! Bending up pieces of iron and conning them off on people.”

But he does have a job to do, and this job he says is to brighten the environment we find ourselves in. He is not a believer in self-expression in the usual meaning of the term; what he is striving for is to locate some common ground and to shine a light there that will illuminate things for all of us. If one person out of thirty stops and looks and receives some special insight he feels his work has been justified.

There was in the studio a figure in iron, exquisitely fashioned, of a seated man playing a ‘cello, and we spoke of this, coming to a closer understanding here than we did over the nameless figure in front of the Library. In this delightful piece the artist has been successful in combining the body form of the player and the shape of the instrument into a meaningful whole. Moving the two forms together he has achieved a “‘cello-man,” in the same way that an Eskimo has been called a “man-
kayak,” and in the way that the Scythian horsemen to the Greeks became centaurs. Here I began to gain a deeper understanding of the work of this remarkable Vermont artist, one who takes tools and materials with which I am familiar, and with them creates forms which move and enlighten.

We parted leaving much more to be discussed: I am still not certain in my own mind that the de-humanization of the arts, to which Paul Aschenbach is at least partly committed, as in the figure in front of the Library at the University in Burlington, is not leading us to the Waste Land. Perhaps, we are already there!

BOOKS

The wing-footed Mercury has delivered into my not unwilling hands a baker’s dozen more of books, and besides these, there were two left over because of lack of space at last writing, thus it behooves me to add a postscript herewith.

To start with poetry, there have been four books. Much to his credit George C. McIntyre disclaims, in his preface to *Scattered Leaves*, any pretensions as a poet, but even as a rhymster he should better mind his obligations, for “epitome” does not rhyme with “home.” Helen Hartness Flanders’ *Ancient Ballads* is the third volume to appear in a series of four and it includes thirty-three ballads; Child Nos. 95 to 243. I wish there were space to go into more detail; needless to say this is a “must” for all ballad lovers and students of balladry. Besides these, a slim book of children’s poems by Kaye Starbird, *Don’t Ever Cross a Crocodile*, and these slight verses are completely enchanting, at least for grown-ups. Finally and most important, *Vermont Sampler*, a soft-bound collection from the works of Walter Hard. Here are selections from three previously published volumes. Most of the verses are anecdotal, a few are descriptive and at least one, “In Wartime,” movingly lyrical; all are delightful. No one has captured in words the Vermont character as this Vermonter has, and this is but a part of his penetrating insight and understanding.

Then follow three books of anecdotes: one about covered bridges, one about Vermonters and one about New Hampshirites. In *Covered Bridges Can Talk* Lewis A. Harlow gives us 62 photographs of covered bridges, from which 34 are in Vermont. Well, perhaps bridges can talk, and the whimsey is a delightful one (as are the quips that go along with each picture). And in *Mosquitobush*, Francis W. Tolman tells stories and makes pictures to go along with them, concerning this once living, now dead New Hampshire community. In *New England Laughs* (mostly Vermont) E. Donald Asselin gives us seventy packed pages of dry and salty humor. All three of these books I recommend without reservation to those who would savor New England’s especial flavor.

Four books are technical: one a reprint, *Minerals, Metals and Gems* by A. Hyatt Verill; *Printing as a Hobby* by J. Ben Lieberman; a book for the clergy, *Marital Counseling* by R. Lofton Hudson (why did it come to me?), and a new cook book by Elsie Masterson, *Blueberry Hill Menu Cookbook*. The mineral book is fascinating; the printing book makes me want to start printing; the marriage book interesting (and should be useful to a dominie); and the cook book has a new slant—it gives two menus for each month, one party menu and one family job.

Two books are historical. *East to Bagaduce* by Willard Wallace is in the form of a novel, the other a short biography of *Admiral Number One* (Esek Hopkins) by Charles H. Miller. Both are extremely interesting, and each gives a different picture of Hopkins, for each book is concerned with naval operations during the Revolution.

Thus I am left with no space to tell about the work of Bradford Smith, my neighbor in Shaftsbury. Here are two important books, one a stirring participation in history in the making called *Portrait of India*, the other, *Meditation: The Inward Art* which shows the way to serenity and self-understanding. I have read each of these books with care and attention, and I feel cheated that I cannot here comment on them; but in any event take my advice: read them!

Scattered Leaves, George McIntyre, Private print, Burlington, N. J.

Ancient Ballads, Helen Hartness Flanders, Univ. of Penna., Philadelphia, $10

Don’t Ever Cross a Crocodile, Kaye Starbird, J. B. Lippincott, Philadelphia, $2.95

Vermont Sampler, Walter Hard, Vermont Books, Middlebury, $1.25

Covered Bridges Can Talk, Lewis A. Harlow, Wake-Brook House, Coral Gables, Fla., $3

Mosquitobush ... Yankee Prints & Stories, Francis W. Tolman, The Richard R. Smith Co., Peterborough, N. H., $3.50

New England Laughs, E. Donald Asselin, Vermont Books, Middlebury, $1.25

Minerals, Metals and Gems, A. Hyatt Verill, Grosset & Dunlap, New York 10, N. Y.

Printing as a Hobby, J. Ben Lieberman, Stirling Publishing Co., Inc. 419 Fourth Ave, New York 16, $3.95

Marital Counseling, R. Lofton Hudson, Prentice-Hall Inc. Englewood, Cliffs, N. J., $2.95

Blueberry Hill Menu Cookbook, Elsie Masterson, Thomas Y. Crowell, New York, $4.95

Admiral Number One, Charles H. Miller, William-Frederick Press, New York 28, N. Y., $2.75

East to Bagaduce, Willard Wallace, Henry Regnery, Chicago 4, Ill., $4.50

Meditation: The Inward Art, and Portrait of India, by Bradford Smith, J. B. Lippincott Co., Philadelphia, $3.95 & $5.95
RHUBARB PUSHES FORTH ITS CHRISTMAS RED AND GREEN, A FIRST

Sign of Spring
FOR THE COUNTRY COOK
by LOUISE ANDREWS KENT
Photograph by Hanson Carroll

WHEN RHUBARB pushes up bright pink stalks with big crumpled green fans at the tops, Mrs. Appleyard really believes spring has come. Of course there are also blue-eyed ponds looking up out of green fields. Spring peepers sound like chimes of sleigh bells. Lacquered gold cowslip stars catch and reflect every ray of sunshine. Small scarlet knobs show where apple blossoms will soon make gilded gray trees into hills of rose and snow. All these things she enjoys peacefully but when she sees rhubarb leaves, she knows the time for lethargy is over. Rhubarb is at its best when the stalks first come. By the time the ivory flower plumes appear, it is tough and stringy. Young "strawberry" rhubarb makes the best pie.

When Mrs. Appleyard's friends, the Dawsons, moved to Vermont from Texas, they were prepared for sleet, hail and snow but the perils of spring—mud, slush, dandelion greens and rhubarb—were unknown to them. When Alice made her first rhubarb pie, Simon did his best to eat it but after a while asked gently, "Do we have much of this in the garden?"

Alice at once telephoned to Mrs. Appleyard who came to the rescue. Later she received a candid camera shot of Simon happily eating pie with the caption: "Appleyard Recipe of Rhubarb Pie Saves Vermont Marriage."

To be sure your marriage is happy, make rhubarb pie like this:

RHUBARB PIE

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 cups of rhubarb</td>
<td>1 1/2 cups plus 2 T. of sugar</td>
</tr>
<tr>
<td>2 T. flour</td>
<td>1/4 t. each of cinnamon and nutmeg</td>
</tr>
<tr>
<td>1 egg, well beaten</td>
<td>2 T. butter cut into 12 bits</td>
</tr>
</tbody>
</table>

Use only "strawberry" rhubarb so young and tender that it needs no peeling. Cut off leaves and the lower ends of the stalks and cut them in 1/2-inch pieces. Sift flour, sugar and spice together. Line a 9-inch pie tin with pastry. Mrs. Appleyard prefers her own but she says some of the packaged brands make very satisfactory crust. Leave a good margin of pastry around the edge of the tin. This is to be turned up over the upper crust and pressed with the back of a fork so no juice will run out. Mrs. Appleyard mistrusts her own skill in this matter so she sets a fruit pie on a square of chef's foil and turns the edges up to make a box, says it's less work than cleaning the oven.

Scatter 1/4 cup of your flour, sugar and spice mixture over the lower crust. Add half your rhubarb cubes. Add half the remaining mixture, then the rest of the rhubarb and the rest of the mixture. The rhubarb should be heaped slightly towards the center of the dish: it will sink while baking. Pour the beaten egg over the pie, dot with bits of butter. Put on the upper crust. Gash it well so that steam can escape. Bake at 450° for 15 minutes. Reduce heat to 350° and bake until fruit is tender and the crust brown and puffed—about 40 minutes longer. If it browns too quickly, cover it with a sheet of buttered brown paper. A snapshot of your husband eating it will be gratefully added to Mrs. Appleyard's collection.

Strawberries come while rhubarb is still good. They combine well in

RHUBARB STRAWBERRY CONSERVE

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 cups of pink rhubarb cut in 1/2 inch pieces</td>
<td>3 cups of small whole strawberries</td>
</tr>
<tr>
<td>1 cup of diced pineapple (no juice)</td>
<td>Thin peel, cut fine, and juice of 2 oranges</td>
</tr>
<tr>
<td>4 cups of sugar</td>
<td>1/4 t. ginger</td>
</tr>
<tr>
<td>1 cup golden seedless raisins</td>
<td></td>
</tr>
</tbody>
</table>

If you cannot get golden raisins, use extra strawberries or pineapple. Ordinary raisins darken the conserve too much.

Mix fruit, sugar and orange juice in a large shallow enamel pan and let them stand several hours. Set the pan into the oven at 375° and cook for one hour. Now cook the conserve on top of the stove 'til juice thickens on a cold saucer. This amount fills six 6-oz. glasses, plus what was wheedled away from you to spread on corn muffins to see if it was just right.

RHUBARB SAUCE

Never add water to rhubarb. You will only have to cook it out again.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 cups of strawberry rhubarb cut in 1/2 inch pieces</td>
<td>3 cups of sugar</td>
</tr>
</tbody>
</table>

Mix fruit and sugar in a large shallow enamel pan. The pan should not be more than half full. Set it into a 350° oven and cook till fruit is tender but not mushy—about one hour. Taste for sweetness. Add more sugar if necessary. This sauce can be sealed in sterilized jars. It keeps well in the refrigerator. Mrs. Appleyard sometimes adds some of the juice to her fruit punch.

She always plans to make more next year. She also thinks she might make rhubarb Brown Betty or wine or ice cream but after all she has other duties. She has to listen for hermit thrushes and sit on a hill top where, at sunset, eagles sometimes fly over screaming. This is the year when she thinks she's old enough to take up painting: not the front porch—pictures. Besides there's that miniature kneehole desk she never finished . . .

Relax, rhubarb. Wave your plumes. You are safe now until next spring arrives.
Oh what delight, on a soft June night
To ride in an open car!
You can stand the expense,
it’s only five cents
No matter how poor you are!

STREET RAILWAY JOURNAL

FIVE CENTS TO EVERYWHERE:
A CHRONICLE OF GREEN MOUNTAIN

Trolleys
KINGS OF MAIN STREET
by ALBERT C. SPAULDING

The summer trolley was fitted with wooden benches which ran the width of the car without a center aisle. You entered it directly from the open sides by climbing the step that ran the length of the car. It was easy for us young fry to avoid paying the nickel fare just by keeping one jump ahead of the conductor. He walked along the step, or running board, and collected the fares while the car was in motion.

Up front, the motorman had one hand on his controller handle and the other on his stem-winder hand brake. Meanwhile his foot-operated alarm gong clonked continuous warnings to those tempted to stray into his path. Within his quick reach was a line controlling the big, flaring cowcatcher or fender. This grimacing contrivance, looking like a misplaced bedspring, was normally in the “carry” position, its point raised a few inches above the rails. But with a flick of his hand, the motorman could drop the fender into contact with the rails and hope to scoop up weary dogs or unwary children.

When we got to the end of the line, the motorman would remove his controller handle, retract the spring-mounted trolley pole from its contact with the overhead wire, walk to the other end of the car, raise another trolley pole to the wire and insert his controller handle. He was ready for the return trip. Meanwhile his conductor had politely ordered “All out!” to his remaining passengers. He had flipped the seat backs, from one end of the car to the other, so that everybody would face in the new direction.

And off we’d go in our breezy, bouncy, open trolley car, feeling the blessed coolness flowing in on us, and smelling the smells of the June night outside. We’d slide precariously on the polished benches as the trolley swung around corners. We’d hear the motorman’s clonking foot-gong and the noisy NOK-NOK-NOK of the compressor mingled with the conductor’s “Fares, please!” Up ahead we could see an approaching car spitting blue fire from the overhead wires as it moved onto a turnout. Their motorman was using his iron or “frog” to pry shut the track switch. Safely past the turnout and its captive trolley, we, the conductor and motorman rocked back and forth in unison as our car gathered speed into the warm night.

This was trolley car riding at the turn of the century and it was the same from the Atlantic to the Pacific, but it had its start in Vermont. For in 1834 Thomas Davenport, a blacksmith of Brandon, built a tiny electric motor on wheels that propelled itself around a little track, like the engine of a toy train. The father of the trolley car, Davenport is recalled by incredulous historians as the man who tore up his wife’s wedding dress to get silk insulation.

Let’s start in the top corner of Vermont. The St. Albans Street Railway Company commenced operations July 3, 1901. The rails laid westward from Main Street crossed at grade level all of twenty-two tracks of the Central Vermont Railroad, and continued generally along Lake Street until they reached St. Albans Bay. They continued right onto the dock of the Champlain Transportation Company where the ornate lake steamers used to tie up. Many times during the summer, special trains, originating way
across the state at Wells River, would bring excursionists to St. Albans' Lake Street station. Here, trolleys borrowed from their regular runs, would be waiting to transport them the three miles to the waiting lake steamers Maquam or Reindeer.

In St. Albans, as elsewhere, open summer cars produced a higher accident rate than the closed models. People tended to board or leave the open cars while they were still in motion, and slippery footing or a missed handhold could land a passenger flat on his back. Men invariably got off a moving car facing forward, to land safely in a running position. Women frequently attempted it facing backward, a practice that tended to deposit them in a backsomersaulting posture.

On July 1, 1902, the St. Albans line was extended nine miles north to Swanton, giving the railway a total route of twelve-and-a-half miles. This included a spur line that ran south on Main as far as Freeborn Street.

The Winooski and Burlington Horse Railroad Company, the first street railroad in the state, began operations on November 16, 1885, and was electrified September 5, 1893. When the name was changed to the Burlington Traction Company on November 11, 1896, twelve miles of line were in operation between Ethan Allen Park to the north, Queen City Park to the south, Winooski to the east, and the Union Depot on the lakeshore to the west. Considered as part of the Burlington system, but actually organized as a completely separate line, was the Military Post Railway Company which opened July 27, 1895. Tracks were laid from Winooski to Fort Ethan Allen, and later extended to the Central Vermont Railway depot at Essex Junction. The total formed a separate system five miles in length, but through service from Burlington to Essex was operated jointly.
by the two companies. The Burlington Traction Company assumed formal control of the whole route on July 27, 1926.

Burlington is and was a city of hills, and that caused problems. Crossing the Winooski River, the westbound cars turned left on Barrett Street, then made a right hairpin turn onto Chase Street, and started accelerating toward very steep Colchester Avenue. On icy or wet leafy days, the motorman might have to make several passes at the hill before conquering it, and then only with the aid of much track sand. Loud were the jeers of small boys standing on the sidelines.

The Rutland Street Railway Company is remembered as the real colossus of Vermont's electric railways. It had a North Belt Line, a South Belt Line, a 24-mile interurban run from Rutland to Fair Haven and Poultney, and a summer run to Lake Bomoseen. Its 35 miles of track carried at one time the greatest number and variety of cars of any system in Vermont, and its trolleys for many years carried more passengers than any other line in the state. Originally built and operated as a horse railway, it was electrified during the summer of 1894. Later, ownership was vested in the hands of the Rutland Light and Power Company.

In Rutland, the kids' fun tended to be wholesome but troublesome. The boy with money to burn put his spare pennies on the tracks and let the onrushing trolley make thin, copper wafers of them. The clown would pull down the trolley wires and the conductor, with money to burn put his spare pen...
extended five-and-a-half miles from West Brattleboro to lower South Main Street at the corner of Vernon Road in Brattleboro near the Fort Dummer cotton mills. In August of 1906, the railway was taken over by the Twin State Gas and Electric Company.

Although opposition to the trolley perhaps was more persistent in Brattleboro than elsewhere in the state, affection for it was demonstrated also one bitter winter. The line was completely tied up for a full week by snow and ice, and the company's pitifully inadequate work force could make no headway. Then citizens by the hundreds miraculously turned out, unmasked, with picks, shovels, and mittened hands to dig the line out, foot by foot and block by block. Working shifts after completing their regular days' work elsewhere, and fortified by hot coffee furnished at trackside by housewives, Brattleboro citizens got the cars back on regular schedule.

The Bellows Falls and Saxtons River Railroad inaugurated its six-and-a-half miles for passenger and freight service on June 29, 1900. The summer's re-opening of Barber Park, mid-way between the two towns, was signaled each year when the town band rolled by, playing the two towns, was signaled each year when the town band rolled by, playing

The Springfield Electric Railway Company's freight and passenger service began on July 21, 1897, over eight-and-a-half miles of winding roadbed that ran from the Adnabrown Hotel in Springfield to the Boston and Maine Railroad in Charlestown, N. H., on the opposite side of the Connecticut. The line's outstanding longevity can be attributed to Springfield's position as a formidable machine tool producer and its need for a rail connection, which it got at Charlestown. In 1922, the line was taken over by the Springfield Terminal Railway Company. Two combination passenger and baggage cars or "combines" always took to the sidings and let the more important (up to ten-car) freights pass by on the main line. Since the line never had a turntable or a "Y," the baggage compartments always faced toward Springfield.

The Barre and Montpelier Traction Company opened its nine miles of rails for passenger service only on June 29, 1898. The main line, from the State House in Montpelier to the Granite Bridge on South Main Street in Barre, was the uncomfortable possessor of five grade crossings with steam railroads. Each town also had its own branch line serving residential areas.

The high jinks of the Saturday night crowds taxed management's patience to the limit. Small blasting caps or torpedoes would be placed secretly on the rails, and the car wheels would detonate them with ear-splitting explosions. Finally the traction company had to employ "sweepers" to ride precarious perches on the front of the cars to clear the tracks ahead with long-handled brushes. For real sport the gay-blade pedestrians would form a gauntlet through which the cars had to run, and would attempt to pull the sweepers off.

The Mount Mansfield Electric Railroad Company went into operation on December 1, 1897, running from the Central Vermont Railway station in Waterbury to Stowe village, a distance of ten-and-a-half miles. A contract was secured to carry the mail and for a time four passenger cars operated daily between the two villages. Freight cars also were in use.

This completely rural line always suffered from a shortage of power. Stowe villagers usually could estimate the location of the cars by the way the lights all over town fluctuated between "nearly out" to "pretty dim." This was especially true in winter when the cars bucked snow drifts on Shutesville Hill. Upon arrival at Stowe, the lights would again revert to their normal status, and a sigh of relief would pass through the village.

Many other trolley lines were projected but few got beyond the discussion stage. Varying degrees of forward movement accompanied the: Burlington & Grand Isle (actually to start at Winooski); Newport, Hardwick, & Montpelier; Vermont & Whitehall (proposed from Fair Haven); Brattleboro & Northfield (Mass.); Bellows Falls & Springfield; and the Burlington & Southeastern.

This latter railroad is worthy of special comment since considerable money was expended on survey and actual construction of roadbed. More familiarly known as the "Burlington and Hinesburg," the Burlington and Southeastern originally was projected to run from Queen City Park in Burlington to Windsor. By 1905, $100,000 had gone down fifteen miles of drain between Burlington and Hinesburg, in purchase of right-of-way, grading, culverts, terminal real estate, and four miles of laid track. With this goal nearly in sight, the company simply ran out of money.

In their heyday, the little four-wheel "bobbers" and the big, eight-wheel, two-trucked interurbans of Vermont carried ten-million passengers a year. The street railways filled a great need in the daily life of most people in the bigger communities. The Smiths couldn't afford horse and carriage, much less keep them in town, and the automobile was still years away. But for a nickel apiece, they could travel in utilitarian comfort, winter or summer, to almost any point in town, and to the beach and the park on the outskirts.

For all of twenty years the rocking trolley was undisputed king of Main Street, contending only with normal opposition rendered by youngsters on sleds or bikes, and by oldsters behind high-stepping Morgans. The first real
hint of trouble came in 1915 with the appearance of the “jitney,” an early name for the taxicab. Automobiles progressed from the rich man’s toy to the ordinary man’s necessity. The dowdy old streetcars had no chance against them.

In 1905 a receivership was established for the St. Albans system, and it was so operated until May 14, 1912, when the line was reorganized as the St. Albans and Swanton Traction Company. The trolleys ran in the face of increasing difficulties until 1921, when operations finally were halted on Armistice Day.

Buses first appeared in Burlington on February 16, 1926, but over routes non-competitive with the Traction Company. Later, however, they appeared on North Avenue in full competition with the trolley line.

The bus company finally bought out the traction company, to secure additional routes, and the end came for Burlington’s trolleys on August 4, 1929. Black crepe decked the cars from noon until 3:30 and no fares were charged. At four o’clock city officials gathered at City Hall park, taps were sounded, and a black-draped streetcar was set afire and symbolically burned to the tracks on which she rested.

The Vermont Public Service commission in analyzing the operations of the Rutland Light and Power Company, found that nearly three-million passengers were carried in 1913, but each following year brought a decrease in gross earnings and a corresponding increase in operating expenses. In 1916 the line ran its final car from Castleton Corners to Lake Bomoseen station. Staggering along for a few more years, the interurban run to Fair Haven and Poultney finally ceased in 1924, and shortly thereafter, in the same year, both belt lines came to a permanent cessation of service.

On October 5, 1898, a normally quiet stream in Bennington, prophetically called the Roaring Branch, suddenly raised to flood proportions by a cloud-burst, swept down-stream much of the Bennington and Woodford’s right-of-way. No tracked operation was ever again attempted here, but hikers on Vermont’s Long Trail today use a part of the old roadbed and occasionally still find a rusty track spike.

On December 31, 1922, cast adrift by its parent Berkshire Street Railway, the Vermont Company took over its own operation, but the flood of 1927 washed out so much track and so many bridges that the Bennington streetcars were soon out of business.

Early in 1923, beset by the usual difficulties which were being encountered the country over, the Twin State Gas and Electric Company decided to substitute motor buses for streetcars. It was on August 29 of that year that Brattleboro’s trolleys ran their last trips.

A disastrous fire on January 24, 1924, destroyed the Bellows Falls carbarn, six cars, and a snowplow. Two remaining cars managed to carry on for a while, but in November of the same year, the road went into receivership, and on the 24th of that month the last car ran over the old rails. It had showed a deficit every year since it started.

Passenger operations in Springfield finally ceased on November 11, 1947, but the trolleys continued hauling freight. In 1956 the trolley wires were pulled down, the tracks were removed from much of Springfield’s Main Street and diesel engines began moving freight cars from the great machine tool companies to the Charlestown railhead.

In the fall of 1925, the Barre and Montpelier properties were purchased by the Vergennes Power Company which continued operations briefly. It was the great flood of 1927 which terminated trolley service here completely, devastating the carbarns, twisting and tearing the tracks, and sweeping away the Pioneer bridge across the Winooski River.

The Mount Mansfield property went into receivers’ hands in February, 1907, and the line was reorganized April 12, 1909. For reasons known only to the stockholders and the villages which it served, the line was permitted to continue for twenty-three more lean years until May 2, 1932.

Few traces remain of Vermont’s once flourishing and far-flung trolley system, save the indestructible Springfield Terminal Railway. The maximum combined mileage of all trolley lines in the state, including mains, spurs, sidings, and turnouts if placed end to end along U. S. Route 7 would about cover the distance from Bennington to St. Albans.

If all the various types of trolleys (open passenger, closed passenger, convertible passenger, parlor car, express, combination, freight, work, snowplow, and sweeper) in service on all Vermont lines just in the year 1913 were coupled together, they would make up a colorful mixed train of better than 170 cars.

Where, outside of the Springfield area, can one find reminders of Vermont’s trolley system? Most of the cars were sold to trolley systems outside the state. Some were converted to concession booths and ticket stands at fairgrounds, some became diners, some were hauled off into adjoining fields, some simply were left where they stopped for the last time, and some have found their way to out-of-state trolley museums.
Brattleboro’s No. 8, purchased new in 1895 and abandoned in 1923, stood forlornly just off Route 30 in West Dummerston until 1957, when it was presented to the Seashore Trolley Museum at Kennebunkport, Maine. There, under the skilled and loving hands of the New England Electric Railway Historical Society, it has been restored practically to its initial condition.

Springfield’s combine No. 10, built in 1901, went to Warehouse Point, Conn., in 1947, where, under the sponsorship of the Connecticut Electric Railway Association, it too was brought to like-new condition. It has become a key item in the Museum’s roster of old-time trolley equipment.

Carbarns converted nicely to bus storage. The largest one, on Burlington’s North Winooski Avenue, is home for Vermont Transit’s large family of intercity buses. The old St. Albans carbarn on North Main Street presently houses the printing facilities of the St. Albans Messenger.

The roadbeds usually were the centers of city streets and the shoulders of out-of-town and suburban routes. But sometimes the trolley line went baring across a field or back lot on its own right-of-way. It’s here that traces of old roadbeds may still be seen. Glimpses of the Mount Mansfield route can be seen between Waterbury and Stowe.

Maybe you can recollect that long-forgotten aroma compounded of varnish, hot motors, and track sand. Perhaps you feel a little sadness that trolleys have left the scene forever. But you can be consoled. The colorful little cars filled a vital need just as in their turn did the stage, the river boat, the mighty Lake Champlain side-wheeler, and the many little Vermont steam railroads. They have disappeared, but they have left their mark for all time on the growth of the areas they served so faithfully.
Hinesburg is a little town—just over 200 people. But it's the address on a million pieces of mail, from around the world, which pour through the town's new 2nd class post office. The old 3rd-class post office, which was housed in a grocery store was no longer adequate when Iroquois Mfg. Co., a local truck body manufacturer operated by Leland Lyman, formed a subsidiary called Vermont-Ware. Vermont-Ware has nothing to do with truck bodies, but utilizes the same skill and experience which enabled Mr. Lyman to develop a very small farm implement business, which he purchased shortly before the crash of 1929, into a successful and respected manufacturer of truck bodies. The bodies are sold over a radius of 200 miles. Vermont-Ware outdistances that radius by thousands of miles. The handsome, rubber-tired, steel-bodied carts which Vermont-Ware produces are sold all over North and South America, and from Hawaii to the Virgin Islands. Full-page advertisements in the home and gardening magazines display Vermont-Ware carts around the world, offering to the customer three models of carts plus a "Build It Yourself" kit for the ambitious. Versatility and ruggedness are obvious features of the carts, making them suitable for transporting several hundred pounds of most anything nearly anywhere. Carrying a load of cement blocks, serving as the base of operations for the back yard chef, or wheeling an outboard down to the boat are just standard duty. And customers' letters constantly tell of new or novel ways in which the carts fulfill their individual needs, in a variety of ways that no other implement will.

The first step towards the cart business happened quite indirectly about 12 years ago when Lyman Wood, who is now Vermont-Ware's advertising consultant, moved to Vermont and bought a farm near Lake Champlain in Charlotte. One item Mr. Wood needed but didn't have was a big cart for moving things around the farm—and none was available. Mr. Wood thought of the grocer's city delivery cart they had used for heavy items at their country bookstore in Noroton, Connecticut, during the war. Because they were no longer available, Mr. Wood brought a photograph of the wooden grocer's cart to a blacksmith neighbor who quickly made a rugged replica, Vermont style. A few friends saw the cart and asked if they could obtain one too. Mr. Wood realized that here was a product for which there was a definite need. Because his work involved experimenting with farm and garden equipment, mail-order selling and advertising, he decided to offer the blacksmith-made carts by mail order. Sales were small but there definitely was a market.

In 1957 after searching for someone who could produce a rugged cart, and in quantity, Mr. Wood decided that Mr. Lyman was the man with the standards and flexibility re-
quired. Mr. Lyman combines the ability of an executive with the talents of a craftsman, and is equally at ease in either position. It’s not unusual to find him with shirt smudged and tools in hand “working out a little problem.”

The first carts that Mr. Lyman produced were patterned after the carts Mr. Wood had been selling, except for a more modern construction, including a steel body. Research and customer letters convinced Mr. Lyman and Mr. Wood that they were producing a product with real potential. Customers were enthusiastic about the solid construction of the cart and its ability to handle heavy loads balanced easily over the axle. However, Mr. Lyman and Mr. Wood became convinced, the future sales potential lay in the area of a lighter but still very rugged cart. But how do you trim weight and still produce a solid cart? The answer had two parts: one, producing a slightly smaller and sleeker cart body; the other, replacing the 30-inch iron wheels which they had been buying with something more suitable. Wheels proved to be the tougher of the two problems—nothing of the type Mr. Lyman wanted were being produced. And Mr. Lyman had very definite ideas about what he wanted; a 20-inch, rubber-tired, spoked wheel with ball bearings, capable of withstanding heavy loads and usage. Determined not to settle for an inferior product, Mr. Lyman attacked the problem of producing the wheels himself. The result was a lightweight and solid wheel, plus the machinery to produce it—all designed by Mr. Lyman.

This was the answer. Sales jumped, pushed along by more intense and effective advertising methods. The next steps were the production of another model with a smaller body but with the same wheels; a wooden-bodied type; and a build-it-yourself hardware kit with plans for the wooden body. These carts have been most successful and sales have risen into the thousands. Vermont-Ware now has fifteen steady employees and is still growing.

Mr. Lyman and Mr. Wood are constantly innovating and experimenting with new models. Their workshops and homes abound with experimental items, all of which are intensely tested before any consideration is given to production. The newest cart, the “baby,” is now in production on an assembly line of tools designed by Mr. Lyman, and is expected to be very popular. While the larger carts must be shipped by truck or express, the “baby” was designed to be within the parcel post size and weight limitations when disassembled. Mr. Lyman leans back in his chair and smiles when he thinks of the day the little Volkswagen mail truck will arrive at the new 2nd class post office carrying 100 cartons of the new “babies” for shipment.
TAKE A MOTTLED BROWN BIRD a little larger than your fist. Give it a head too large for its body and eyes too big for its head. Set it on comical little legs that spraddle as it walks. As a finishing touch, add an astounding bill nearly 3 inches long, out of which issues a voice like a Bronx cheer. You have what some people call a woodcock.

It's known by many other names, too. "Timber doodle," my forestry professor in Connecticut used to say, when we'd flush it out of an alder swamp. Down along the Gulf Coast where it spends its winters, it may also be known as big-headed snipe, night partridge or bigeyes. In the southeastern quarter of Canada, which marks the limit of its summer range, it sometimes goes by the name of bog snipe, Labrador twister, or whistler—this last alluding to the sound of the wings in flight.

The name that fits best, however, is one which sounds something less than complimentary until you learn of the woodcock’s habits. One of these birds was brought to me. It had been stunned by a car. The motorist watched me stroke the rich brown plumage and gently feel the feathered shins for possible breaks. “What do those bog-suckers eat, anyway?” he asked.

The truth is that, far from being ridiculous in its makeup—except by human standards—the bog-sucker is admirably built for the strange niche in which it lives. That long bill is wonderful for flipping over chips and dead leaves to expose beetles and other small insects. It’s best suited, however, for the woodcock’s main fare—earthworms by the hundreds.

If you think of earthworms and how they live, everything about the woodcock falls in place. Earthworms are scarce in evergreen woods. However, they are found in alder thickets and moist hardwood lowlands—and so, here you find the woodcock. Earthworms often come to the surface of the ground at night to feed on decaying plant material; hence the woodcock’s long, probing bill. This sensitive organ also has a flexible tip to the upper mandible. Thus, even when it’s buried to the hilt in the ground, it can grasp the worm in its burrow. The large eyes are wonderful for night vision and the short legs allow it to be close to the ground for its peculiar feeding habits.

Even the pattering little feet have their place, according to an ornithologist friend. “Ever notice how worms come out of the ground when it begins to rain?” she asked. “The same thing happens when a woodcock is feeding. It stamps the ground quickly and lightly. Or sometimes it flutters its wings. This must feel like falling raindrops to the worms, for they obligingly come up within reach of the woodcock’s bill.”

Whether the bog-sucker gets all its worms in this way or not, the fact is that it’s amazingly successful in finding them. The prodigious appetite of young birds of many species is well known, but this bird is a heavy feeder even as an adult. It may put away twice its own weight in earthworms in a 24-hour period. The ground where it has been feeding may be dotted with holes about the size of a pencil, looking as if someone had peppered the place with a scatter-gun.

The timber doodle’s new year begins sometime in March when it arrives from the southern states. It finds a clearing about the size of a tennis court in a swampy woodland, or takes a stand in an overgrown field. Here the male sets up his outdoor auditorium. Then, just at dawn or dusk, he indulges in one of nature’s strangest love songs.

It starts with a little hiccup. This is followed by the call note. Charitably, nature writers often refer to this latter as a “nasal ‘peent,’ somewhat like the note of the nighthawk.” However, to many people it definitely smacks of a good Bronx cheer.

The bird repeats the hiccup-cheer every five seconds or so. He struts like an elfin turkey, turning this way and that and throwing the head backwards with each “peent.” This gives it a ventriloqual character, and you may almost stumble over the singing male in your effort to locate the sound.

After a few minutes, the second half of the performance begins. Springing into the air, the woodcock beats his way upwards. The feathers of his wings whistle in a rising crescendo as he gains speed. Higher he goes in a spiral which may take him 300 feet above his singing ground. Here he begins a series of ecstatic vocal chip-chip-chips and whistles which become more impassioned as he circles. Then there is a sudden silence.
Now the woodcock dives to earth. He planes downward in a zigzag plunge, uttering a twittering whistle as he falls. Then, if you've been standing in the same place as when you first saw him, he suddenly materializes at your feet. "Peent!" and the whole process is repeated.

Woodcocks are quick to take advantage of new opportunities. A favorite singing ground for woodcock near my house is the little town dump, scuffed out of the woodland by a bulldozer. I can usually hear one any time from late March to June. If the moon is bright, the aerial song-and-dance may go on all night. Finally it gets results; the female arrives on the scene and nesting begins soon after.

Since the singing ground is a most conspicuous spot, what with the male strutting back and forth and taking off on his courtship flights, the female nests in a more sheltered place.

"Consider yourself fortunate if you ever find a woodcock nest," says my ornithologist friend. "I've seen just two. In each case the female looked like the pattern of the dead leaves around her. They're so confident that you can't see them that they sometimes let you reach down and stroke them on the nest. Sometimes they'll sit right through anything. I once heard of a photographer who came across a nesting bird in the dense shade. So he got an axe and hewed a couple of saplings out of the way. Then he set up his equipment, took some close-up pictures, packed up and left—and the bird never moved."

The nest with its 3 to 5 pinkish-brown mottled eggs is just a handy depression in the earth. There's apparently no special nesting material provided. "Woodcock babies look like tiny baby chicks," my friend continued. "They hatch after three weeks' incubation. They can run around almost at once. They have funny little bills just like mamma's. If you come across them in the woods, you'd better look quick. They'll 'freeze' so still that they disappear in plain sight. Their freckled down blends perfectly with the forest floor."

She also told me that the male apparently has just one mate, "Although," she hinted darkly, "I've heard of at least one case where there were two nesting females within a few hundred feet of a single male."

How the woodcocks tell each other apart is a good question. To the human eye, females and males look alike—except for a possible slight difference in length of bill. If the bogsnipe has a bill just under 3 inches long, it's liable to be a female. If under 2½ inches, it may be a male. "In fact," says my woodcock expert, "scientists feel that strutting enables some birds to tell the difference between the sexes. If two birds meet and one struts while the other doesn't, it's a case of boy meets girl."

One of the most persistent tales about the timber doodle is that it carries its young about from place to place. Experts disagree on this point, but it has been reported a number of times. Apparently the young nestle right beneath the mother's body and make their way between her feathered thighs. Then, when she is suddenly flushed off the ground, one or more of them may cling to her for a while.

Whether they land safely, or whether the whole procedure is intentional, is still a question. But the care of the mother for the young is well known. If an enemy is near, she utters a soft "chip" and they run beneath her body or "freeze" where they are. I've seen a wonderful home movie sequence of a female woodcock dragging an "injured" wing just out of hand's reach. She kept it up, leading the photographer farther and farther away from the babies, who kept so still that one didn't blink even when a fly tickled its eye.

By early November, the bog-sucker takes off to sample the southern earthworms. Still partial to moonlight, it may migrate at night, its rounded wings whistling as it appears in silhouette against the moon. Sometimes it goes in small flocks, feeding by day and flying again at night.

"Since the woodcock is a game bird that migrates, it's controlled by Federal and State Law," a warden informed me. "Here in Vermont, hunters can usually take them during the month of October. That is, if they can hit them. They fly like a rudderless jet."

Like many other creatures, the woodcock is not against taking the easy way when it's offered. I've heard of deer which spent much of their time in an alfalfa patch instead of eating coarser twigs of the forest. A squirrel at Gifford Woods State Park spends its time on a regular "beat," visiting the front ends of parked cars, picking off insects which have been hit in flight. Now even the independent timber doodle may be able to change its ways. This was hinted as I talked to the owner of one of our Vermont ski resorts.

"A couple of years back we installed a heated swimming pool," he told me. "We ran spring water through it, and heated the water. Some of the pool's overflow, plus that from the spring itself, went down the mountain. Of course, the ground didn't freeze where this water ran. There was a little green grass there all winter. There was a brown bird there, too—just as fat and happy as could be. Seemed to be all bill and no neck. Just a little larger than a bobwhite quail and it flew as though it was half crazy. Wonder what kind of bird it could have been?"

I'm not sure, of course. But knowing that woodcocks have been seen on well-watered city lawns in a dry spell, and have probed for earthworms in the thawed ground above an underground heating pipe, I have my suspicions. And if it comes again, I bet it turns out to be a woodcock. Independent as ever, of course, but just enough of a pioneer to swap that long trip south for steam-heated earthworms. It will get first pickings, too, on the singing grounds this spring.
MONSTERS—Vermont Life’s Lake Monster editor admits sadly that the great aquatic serpent has not been sighted now since late in 1961. Writing in the Burlington Free Press Dragon Strip editor Beowulf St. George confirmed that the 1963 season closed with no reports received. The summers 1948 to 1951 were active ones for the monster, so perhaps he’ll return from watery hibernation in 1971.

STONES—Last summer this magazine boasted flatly that the 3400-ton Green Mountain Giant in Whitingham was the largest boulder in New England. But it appears New Hampshire is even stonier than Vermont, for that state’s Madison Boulder, weighing some 7600 tons, is the largest east of the Mississippi, we’re told, and the second largest in North America.

SUGARING—Since maple sugar time lies just ahead the Postboy reminds those who would like to witness this sweet, annual ritual that they may write the Vermont Development department for lists of sugaring operators, both large and small, where visitors are especially welcomed and sugar parties arranged.

PROMOTION—New records in dullness and uninformative splash are set each year by the average tourist brochures. So to the Postboy as a pleasant surprise comes a new, attractive and sprightly packet of detailed, authoritative and complete data about Vermont’s southeast corner—Windham County. In separate, capsuled formats here are the full facts on skiing and other winter sports, maple sugaring, things to do, rosters of lodgings, tours, shops, good eating places, fine maps, an index—and all of dozens of things one might possibly want to know about. If the Brattleboro Area Chamber of Commerce is able to supply all those who are bound to want these packets, it’s possible that nobody this year will get any farther than Windham County, Vermont.

BEARS and HORSES—Green Mountain Park in Pownal opened last year at a pace uncomfortably slow for both the management and the State Treasury, but it picked up momentum when they switched to night racing. Commenting on the establishment last autumn, the Bennington Banner noted that “The horseplayers’ daily Baedeker, the Morning Telegraph, has honored the track with the presence of a staff writer.”

“But in his rhapsody on the lovely natural setting of the track,” the Banner reported, “he had this to say:

“And at what track can you watch a mother bear bring her two cubs down to the stream right in back of the track and give them their ablution?”

“Good question,” the Banner comments. “We know of none, including Green Mountain Park. The only bear we have heard of in late years in Pownal is Gladly, the cross-eyed bear, they sing about in the village church.”

BUYING BOOKS—At fairly regular intervals for the past 18 years Vermont Life has been reviewing new books concerned with Vermont, and all this time we have continued to receive plaintive reader inquiries: “How can I buy this book?”

The answer, dear non-book-buyer, is a “book store.” These admittedly rare emporiums are willing and able to procure whatever book you want, in print or out. VL will continue to list title, author, publisher, city of publication and price. Your friendly neighborhood bookseller stands ready to do the rest.

ADVERTISING—By request Vermont Life has again been investigating the feasibility of carrying advertising. To those many readers who view advertising on a level just below treason, we hasten to report: The inquiry showed advertising wouldn’t work. We would have to charge more per page of ad space than we could ever hope to sell. For more on this see page 62.

Mystery Picture

First correct location of this old mill, photographed by John Harris, postmarked after midnight March 2, will receive one of our special prizes. Residents of the town location are disqualified. Please use postal cards.

The old St. Albans trainshed, a classic and lone survivor of its type, never quite reached its hundredth birthday. Weakened by age—it was built in 1866-67—and no longer economical for the Central Vermont Railway to operate, it has fallen under the wrecker's hands.

Old trainsheds such as this, reminiscent of London’s cavernous Paddington, once were the pride of several New York state cities, and of Chicago and Springfield, Massachusetts. St. Albans’ landmark was
the last to survive in this country.

Arched track portals pierced the structure’s 88-foot ends. It was walled of brick to the ornately curled roof cornices. Vestigial buttresses of brick lined its 351-foot length, each separating a window. An intricate wood and steel rod truss of Howe patent covered bridge design supported the roof.

The old buildings’s handsome designs were photographed just before its end late last year.

(MORE PICTURES ON PAGE 60.)
Shed's 351-foot west side was buttressed between long, narrow windows.

Inside, a series of arched, wooden trusses supported the curved roof from end to end.

The days of bustle were long past.
IF YOU ARE WONDERING WHAT THERE IS ABOUT Fishing
THIS IS THE CHANCE TO FIND OUT

Non-Vermonters have remarked a curious bustle comes over the placid countryside various times each year. In the towns uneasy quiet settles. Any truant schoolboy can explain: It's the first day. Everybody’s fishing. But there’s no need to await the trout season. Right now you could be out on Shelburne Bay jigging savory smelt and perch. Shortly you could be standing with the habitués who line the Willoughby’s banks to watch (and occasionally catch) the great rainbows running. Or you might be with the flotilla at Missisquoi’s mouth landing plump walleyes by the dozen.

Learn from such knowledgeable Vermonters about these wonderful holidays. Will you let us tell you the whole Vermont fish story?
Fill out and mail the coupon below. Plan to join the fun.

VERMONT LIFE, MONTPELIER, VERMONT
PLEASE SEND ME THE FREE VERMONT FISHING GUIDE.

NAME

ADDRESS

CITY: ___________________ STATE: ___ ZIP: ___
Vermont Life is going fishing too.

Certain numbers of our staff will be out there the first day, whipping streamers through the chill trout waters.

The rest of us will be right here thinking of ways to bring you an even better magazine. But right now we’re fishing for a record catch of new readers. That irresistible lure, two-dollar bills, will do it—new subscription gifts to those friends who aren’t so lucky to know Vermont.

What inducement are we dangling? First it’s Vermont Life itself, which already has won a good many hearts. It’s the satisfaction of sharing your love of the Green Mountains. It’s the promise, too, that the more you can help us to grow, the more informative, beautiful and interesting the magazine will be.

Something big isn’t necessarily, by Vermont thinking, something therefore desirable, but there’s no escaping that in publishing as in farming size alone allows unit costs to go down. For us it will mean more of those $2 bills can go into more choice photography, engaging writing, handsome color and printing.

So now you can go fishing with us. Bait our dangling hook (as suggested above) with crisp, paper morsels. Your harvest will be a continuing delight, we promise, to you and your friends everywhere.