
nenoTECH
nenoPAK

Read (Re First-
Before You Start!

This equipment generates and uses radio
frequency energy and if not installed and used
properly, that is, in strict accordance with the
manufacturer's instructions, may cause
interference to radio and television reception. It
has been type tested and found to comply with
the limits for a Class B computing device in
accordance with the specifications in Subpart J
of Part 15 of FCC Rules, which are designed to
provide reasonable protection against such
interference in a residential installation. However,
there is no guarantee that interference will not
occur in a particular installation. If this equipment
does cause interference to radio or television
reception, which can be determined by turning
the equipment off and on, the user is encouraged
to try to correct the interference by one or more
of the following measures:

— Reorientthe receiving antenna.

— Relocate the computer with respect to the
receiver.

— Move the computer away from the receiver.
— Plug the computer into a different outlet so

that computer and receiver are on different
branch circuits.

— If necessary, the user should consult the
dealer or an experienced radio/television
technician for additional suggestions. The
user may find the following booklet prepared
by the Federal Communications Commission
helpful:

"Howto Identify and Resolve Radio-TV
Interference Problems".

This booklet is available from the U.S.
Government Printing Office, Washington,
DC 20402, Stock No. 004-000-00345-4.

WARNING:
This equipment has been certified to comply with
the limits for a Class B computing device,
pursuant to Subpart J of Part 15 of FCC Rules.
Only Computers/Peripherals (computer input/
output devices, terminals, printers, etc.) certified
to comply with the Class B limits may be attached
to this equipment. Operation with non-certified
peripherals is likely to result in interference to
radio and TV reception.

Hello User,
By now you may have become quite
expert at BASIC programming on the
Sinclair ZX81. You're probably making
good use of one of the Memotech
MEMOPAKs or another commercial
RAM pack. But you'd like to try
graphics-programming in a new
dimension. Graphics can be great fun
- apart from space zombies to be
zapped without serious risk to your
health, there is a new world of design,
animation, geometry and presentation
to try.
Again, we hope that you like our
elegant design. Now let's tell you how
it works.

How do I set up the Memopak HRG?
Disconnect your ZX81 power supply,
and install your HRG pack between
the ZX81 and your RAM pack. You
need a RAM pack because the HRG
routines operate primarily on the
memory-a screen image is held as a
'video page' in about 6.2K of RAM.
The more RAM you've got the more
video pages you can use.
We recommend you use the Sinclair
1200 milliamp power supply as
supplied with the Sinclair printer and
recent ZX81s.
You will find all MEMOPAK units plug
in firmly, but for the best connection
we suggest you cut up and use the
velcro tabs provided. Moreover, our
HRG pack utilises the addresses
between 8 and 12K, so if you have a
MEMOPAK 64K you will have to make
sure this area is switched out. This
means you must set your switch either
in MODE B (2 ON; 1,3 and 4 OFF) or
MODE D (4 ON; 1,2 and 3 OFF).
Remember ON is UP. With a 64K RAM
pack you will probably want to put
your video page above 49152. In this

be looking at another video page
while doing so!

How is a video page organised?

A variable is reserved by the HRG
system to hold the memory address
of the start byte of the video page. So
always remember to set variable V to
the start of the particular video page
you want to reach.
Roughly speaking, one screen dot (or
HRG pixel) is stored in one bit of
memory. However, when placed in
memory each horizontal 'line' of 248
graphics bits is preceded by 2 bytes of
control data. In addition, there is a
single byte of screen control data
terminating the whole video page. So
the arithmetic looks like this:

Bit Summary
Line Screen HRG
Control Graphics Memory

Line 16 + 248 = 264
Page 3072 + 47616 = 50688

1 video page = 50688 + 8 page control
bits = 50696 bits.

Byte Summary

Line Screen HRG
Control Graphics Memory

Line 2 +31 =33
Page 384 + 5952 = 6336

1 video page = 6336+1 page control
byte = 6337 bytes.

Whereabouts in memory can I put a
video page?

You must choose an area which is not
otherwise occupied by the system
variables, the instructions, the display
file or your other arrays. The simplest
thing is to set a low RAMTOP leaving
you enough space (6337 bytes per

video page) between that and your
real limit of memory. Clever users
may find other ways.

How do I use the HRG subroutines?

A subroutine is called by using the
Sinclair USR function. We recommend
the use of an instruction such as RAND,
as this has few side effects, but other
instructions may do. All the
subroutines can be called initially
from one address (8192), so that the
same call can be used for any
function:

RAND USR 8192

If however you want to reserve RAND
to set the seed for the randomizer,
then use, say, LET A = USR 8192. To
nominate a particular subroutine
however you must first specify its
name in a reserved variable Z$. So to
call for example the simple PLOT
function (which sets a bit in the video
page) you must first enter the
instruction:

LET Z$ = "PLOT"

"PLOT" in turn uses the X and Y
variables to find out the co-ordinates
to be plotted. So the whole step goes
like this:

LET X = 64

LET Y= 100

LET Z$ = "PLOT"

RAND USR 8192

This little routine, provided the right
initialisation steps have been taken,
will set one bit in the video page
specified.

How do I use the MEMOPAK HRG
with a BASIC program?

The MEMOPAK HRG has been
designed so that you can use it in
ordinary BASIC. There are also
routines which allow you to switch the
screen from conventional BASIC
display to the HRG display and back
again. While you are developing your
program, you can use the manual
'BASIC RETURN' button on the side of
the pack which puts you back into
BASIC display mode, without in any
way endangering your graphics data.
When you return back to the BASIC
display mode, you may be upset to
find a blankscreen. This is blanksimply
because although your BASIC
program is running, it has not been
requested to output anything to the
screen. You'll probably want to look at
your program listing at this point, so
you need to use the Sinclair BREAK
and LIST functions.

What about FAST mode?

These routines work rapidly in FAST
mode, at least as rapidly as graphics
on the Sinclair Spectrum and with
more pixels. However, in FAST mode,
you lose the screen and the gratifying
experience of seeing the graphics at
work for you. Moreover in FAST mode
the 'BASIC RETURN' button cannot
work, so if you want to get back to
BASIC display manually, you have to
break in and enter "SLOW" even
though there will be no screen
response until you've done it. Now
you can use the 'BASIC RETURN'
button.

How do I initiate an HRG routine in
my BASIC program? (Page functions)

The first thing is to set the start byte of

your video page in the reserved
variable V. Then you must cite and
activate the "START" function.
Functions must always be cited in
reserved variable Z$ prior to the call.
"START" does two things: initiates
the HRG system and assigns the video
page area (start address cited in V) to
it. (Later in the program the "PAGE"
function could be used to assign
another video page without re¬
initiating the system.) (Note: the
groups of instructions which follow
are typical enough, but when all put
together they may form a pretty absurd
program. For Teal' program examples
see the back of this booklet).
Your routine so far could well look like
this:

10 LET V = 40000

20 LET Z$ = "START"

30 RAND USR 8192

You may now want to clear the video
page area initially (or else you may
pick up what you left there before -
remember an area above RAMTOP is
not cleared by Sinclair).

40 LET Z$ = "CLEAR"

50 RAND USR 8192

Note the same USR address is used
whatever the function. "CLEAR" also
uses variable V to find out where the
page to be cleared is located. Since
we are talking about the same page
that was assigned with the "START"
function, there is no need to re-set V.
All the activity so far has gone on in
the memory video page and we
haven't seen a thing. To keep your eye
on what's going on, let's do an "HRG"
call. This will do an HRG display of the
memory page rather than display
anything your BASIC program may

have output. Don't worry, your BASIC
outputs are still accessible (they're
still in the Display or D-FILE), but they
are now invisible.

60 LET Z$ = "HRG"

70 RAND USR 8192

Note that as we are still talking about
the same video page, we still have not
re-set V. The screen is now locked into
our video page and anything that
happens there, we can watch.
"HRGINV" will also show what is in
the page, but in reverse, and without
changing the byte in the memory.
So in just seven lines we are ready to
start depicting something. If seven
lines is too much for you, we have
kindly provided you with a macro
(multiple) function: "STARCH".
"STARCH" sounds like a new concept
in programming for laundry control
but really it simply means "START"+
"CLEAR" + "HRG" and the above
program can now be shortened to 3
instructions:

10 LET V=40000

20 LETZ$ = "STARCH"

30 RAND USR 8192

To summarise: the HRG system is
initialised; a video page is assigned
from 40000 onwards; the page is
cleared and the contents (blanks or
unset HRG pixels) displayed.
We can just mention 3 other page
level functions: "PRINT" will transfer
any video page to the Sinclair printer.
"STRING" will let you pass a video
page into a long string which can then
be SAVEd on cassette by the ZX81.
"UNSTRING" will unpack a string into
a video page for you on re-LOADing.
The video string is always S$. You can
use "STRING" simply to clear space

I

for yourself above RAMTOP. But don't
try to "UNSTRING" something which
you did not "STRING" first, unless
you are sure you have got the control
characters right.
Incidentally, if you don't like the idea
of repeating the subroutine call - e.g.
RAND USR 8192 - all the time, you
may like to place it in a little subroutine.
For some repeated calls, you might
also like to set the parameters from
within the routine as well.

What can I dc now?

You are now free to experiment with
the other subroutine functions (and
their parameters) listed at the back.
They are broken down into five kinds:
page functions, block functions,
character functions, line functions and
dot (or HRG pixel) functions. The page
functions have already been described
above. As for the rest, let's start small.

HRG pixel (and dot) routines

The simplest function is "PLOT" which
requires X and Y co-ordinate
parameters in addition to V:

80 LET X = 50

90 LET Y = 60
Z

100 LETK$ = "PLOT"

110 RAND USR 8192

This will place a dot on your screen.
Remember that the co-ordinates in X
and Y work like this:

Axis Range Direction
X Horizontal 0-247 Leftto right
Y Vertical 0-191 Bottom to top

"UNPLOT" works in exactly the same
way, so:

120 LET Z$ = "UNPLOT"

130 RAND USR 8192

will take the dot away again, if you
want to find out whether an HRG pixel
is set use 'TEST", this time calling the
routine with the basic LET instruction
for the reply:

140 LET Z$ = "TEST"

150 LET K = USR 8192

160 IF K = 0 THEN T9»_

170 IF K= 1 THENJ28BO-

Any variable may be used; if the
routine returns 0 then the pixel is
unset, if 1 then set; and you can take
action accordingly. In this case, since
the routine is still testing the old X, Y
locations, which we UNPLOTted, then
the reply will be zero.
With "HRG" called, your screen
displays an image of the video page.
However you can use the "LOCATE"
function to find the absolute memory
address of a pair of co-ordinates, and
so manipulate the video page directly.
Remember however, that the video
page is not exactly the same as a
screen; there are two control bytes
preceding each line (the first one is a
Sinclair newline byte (118) and the
second one is zero) and one more
byte after the last line in the page
(also 118). So if you want to interfere
with a video page directly, take these
into account. To find out where in
memory our pixel location is, enter:

180 LET Z$ = "LOCATE"

190 LET K=USR 8192

and K will receive the address.

Can I run two or more video pages
together?

Yes, they can be located next to each
other in memory and will effectively
be joined vertically. In this case the
first line control byte of the later video
page should be the same as the last
page control byte of the first video
page. It is now possible to look at any
'intermediate' page made up of later
lines of the earlier page and earlier
lines of the later page. To call such a
page make sure that your start byte
value placed in V is displaced from the
start bytes of the 'real' video page by
a multiple of 33.

What about Geometry?

At this point we can introduce our
simple geometric functions. We could
have provided more but we think it is
an excellent chance for users to brush
up on their skills. The only functions
we provide are "LINE", "UNLINE",
"BLINE" and "WLINE"; any other
shape can be effected by combinations
of these or the "PLOT" call, and the
Sinclair maths functions.
You'll need to work on your algebraic
geometry, or dust off a text-book to
get algorithms for curves, sine waves
and so on. Try this natural log curve:

200 LET Z$ = "PLOT"

210 FOR X= 1 to 245

220 LET Y=33 * LN X

230 RAND USR 8192

240 NEXT X

Line routines

"LINE" will join the points specified in
the pairs of co-ordinates P, Q and X, Y
and you should be able to do

straight-edge geometry yourself.
"UNLINE" will wipe out a line in the
same way.
"BLINE" (black line) and "WLINE"
(white line) are used only for vertical
plotting and will draw a line upwards
from X, Y until a bit of the same setting
is encountered. The vertical co¬
ordinate of the setting is returned in Y.
Used in conjunction with the
"LAUNCH" routine, some
sophisticated shading routines are
possible. See our example at the back.
Lastly, for the zappers, there is our
"LAUNCH" routine. This will fire a
laser beam vertically up the screen
and detect a 'hit' (i.e. if any of the bits
in its path were set). If there is a hit, it
passes back the vertical co-ordinate
and vanishes. Otherwise, it disappears
off the top of the screen. "LAUNCH"
need not be used so aggressively; it
can also serve as a 'radar' function to
detect the presence of the first bit set
in a vertical column rising from the X,
Y position cited. This can be used for
shading or blocking in.

Character routines

There are two kinds of character you
can plot-those you've designed
yourself and those Sinclair provides.
To design a simple horizontal line of
bit settings, simply set up a string of
0's and 1's in C$, with a colon as
terminator:

250 LET C$ = "10101

Instead of 0, you can use * to avoid
disturbing the initial status of a bit. To
design a 2-dimensional character you
can simply use N, S, E or W (or a
combination) to re-set the start
location of the next series of bit
settings, and continue. So we could
plan a cross on the screen instead:

Type in

250 LET C$ = “1***1NE1*1NE1NW1
*1NW1***1:"

260 LET X = 30

270 LET Y=40

280 LET Z$=“SKETCH"

290 RAND USR 8192

and the cross will appear with the
bottom left-hand point located at
30,40. In this example, we built the
character upwards using N, but we
could have dropped it downwards
using S, or missed out a line altogether
using SS.
“UNSKETCH'' has the effect of
unsetting the bits set in the string.
''INVSKETCH'' is like “SKETCH" except
that it reverses the bit settings, placing
a reverse image of your character in
the video page itself.
“SINCH" does the same thing as
“SKETCH" except that you need to
cite a Sinclair character. For reverse
images, you can use Sinclair's own
inverse functions. A whole string of
Sinclair characters can be displayed
anywhere in the page, starting at the
X, Y point which represents the bottom
left-hand corner of the first character.
To wipe out a “SINCH" display, use
the Sinclair space character.

Block handling routines

For block handling routines, to save
on tedious co-ordinates we have hit
on the concept of north, south, east
and west. For this reason, variables N,
S, E and W are called.
We have two dynamic routines which
can be useful for animated displays -
roll and scroll. The "roll" functions
take a block and shift the constituent
lines up or down, taking the line that

has dropped off the block at one end
and adding it on at the other. This is
done according the following 2-
character command strings - "RU"
(roll up) and "RD" (roll down), and
these will use the Nl, S, E and W
parameters.
A similar set of commands exist for
the scroll functions. "Scroll" differs
from "roll" in that the line that drops
off will completely disappear and a
blank line will step in at the other end.
Scrolling can be done horizontally as
well as vertically] So these are the last
four command strings you've got:
"SU","SD", "SR" and "SL".
Note that whemmoving horizontally, E
must be greater than W; when going
vertically, N must be greater than S.
Scrolling and rolling is most effective
when set in a loop.

Subroutine Calls

Command
string (Z$) Function Parameters

Page routines

START Initiates HRG system
and assigns memory
video page V

PAGE Assigns memory
video page V

CLEAR Clears a page V

HRG Displays a page V

HRGINV Displays a page
inversely V

STARCH Macro = Start +
Clear+HRG V

PRINT Prints a video page V

PRINT1 Prints top line of
video page V

BASIC Displays current
BASIC page NONE

STRING Copies page into
BASIC string V,S$

UNSTRING Copies string into
video page
(requires DIM
S$(6337) or more) V,S$

Block routines
RU Roll Block up V, N, S, E, W
RD Roll block down V,N, S, E, W
SU Scroll block up V, N,S, E, W
SD Scroll block down V, N,S, E, W
SR Scroll block right V, N, S, E, W
SL Scroll block left V, N, S, E, W

Character routines
SKETCH Plots user-defined

character V, X, Y, C$
UNSKETCH Unplots user-

defined character V, X, Y, C$
INVSKETCH Reverses user-

defined character in
page and screen V, X, Y, C$

SINCH Plots ZX81-defined
character V, X, Y, C$

Line routines
LINE Draws a line V, X, Y, P, Q
UNLINE Wipes out a line V, X, Y, P, Q
"BLINE Draws black line

'UP'until set BIT V, X, Y
*WLINE Draws white line

'UP'untiJ unset BIT V, X, Y
"LAUNCH Draws momentary

line 'UP' until set
BIT V, X, Y

Dot routines
PLOT Sets one BIT/HRG

pixel V, X, Y
UN PLOT Unsets one BIT/HRG

pixel V,X, Y
"TEST Gets a setting of a

BIT V, X, Y
"LOCATE Gets a memory

location of a BIT V, X, Y

*These calls elicit a reply and so should be made
with the LET statement:

LET G = USR 8192

will place the reply in G. "LAUNCH", "BLINE"
and "WLINE" will get a value of the vertical co¬
ordinate. "TEST" will get a value of zero for an
unset, one for a set bit. "LOCATE" will get the
absolute memory address of a bit set. Or you can
use a logic test:

IF NOT USR 8192 THEN GOTO 1000

HRG Parameters
Z$ = Command string
V = Start byte of assigned video page
X = Horizontal co-ordinates (0-247)
Y = Vertical co-ordinates (0-191)
P = Secondary horizontal co-ordinates (0-247)

Q = Secondary vertical co-ordinates (0-191)
N = Uppermost block line (0-191)
S = Lowest block line (0-191)
E = Rightmost block line (0-247)
W = Leftmost block line (0-247)
C$=String for "SKETCH", "SINCH" etc.
S$=String for storing video page data

HRG error codes
L = Parameter variable not declared
M = HRG command string not known
N = Horizontal parameter too large
O = Vertical parametertoo large
P = Invalid element in "SKETCH" string

Here are some examples to try:

A) To drawtwo waves, and shade in
the areas between.

10 LET V = 40000
20 LETZ$="STARCH"
30 RAND USR8192
40 LET Z$ = "PLOT"
50 FORX = 0to 247
60 LETY = 100 + 50 * SIN(X/20)
70 RANDUSR8192
80 LET Y= 100 + SIN(X/30)*

COS(X/15)*50
90 RAND USR 8192

100 NEXTX
110 FOR X = 0to 247
120 LET Y = 0
130 LETZ$ = "LAUNCH"
140 LETY=1 + USR8192
150 LETP = USR8192
160 IFP = 0THEN GOTO 190
170 LETZ$ = "BLINE"
180 RANDUSR8192
190 NEXTX

Run it and see. Is it a bird? Is it a Loch
Ness Monster?
A few notes about the program:
"LAUNCH" detects the first set bit in a
vertical pattern. In line 140 we add 1
and use that as the start of "BLINE"
which will draw a black line up until
the next set bit. Sometimes, we don't
want to draw a line up, so we test to
make sure that a second bit exists as
in lines 150-160.

B) To make a beautiful pattern from
curves. Is it a bird? Is it a seal?

10 LET V = 40000
20 LETZ$="STARCH"
30 RANDUSR8192
40 LET Z$ = "PLOT"
50 FOR A = 10TO 100 STEP 3
60 LETD = A*A
70 LETC = D*190
80 FOR X = 0TO 247
90 LET Y = C/(X*X + D)

100 RANDUSR8192
110 NEXTX
120 NEXTA

C) Here is a program which shows a
funny clock. We're sure you could
make it better- more accurate;
with hours as well. Change line 80
to make it slow down or speed up.

10 LET V = 40000
20 LETZ$="STARCH"
30 RANDUSR8192
40 LETP= 100
50 LET Q = 100
60 FORT=1 TO 60
70 GOSUB130
80 FORZ=1 TO20
90 NEXTZ

100 GOSUB210
110 NEXTT
120 STOP
130 LETX = 100 + 50*SIN

O’* PI/30)

140 LET Y = 100 -I- 50*COS
(T*PI/30)

150 LETZ$ = "SINCH"
160 LET C$ = STR$T
170 RAND USR8192
180 LETZ$ = "LINE"
190 RANDUSR8192
200 RETURN
210 LETX = 100 + 50*SIN

(T*PI/30)
220 LET Y = 100 + 50*COS

(T*PI/30)
230 LETZ$ = "UNLINE"

240 RANDUSR8192
250 RETURN

In addition to the HRG, Memotech are
currently producing:

a MEMOPAK 64K

a MEMOPAK32K

a MEMOPAK 16K

a Centronics type parallel printer
interface

Memotech are also planning to bring
out the following ZX81 add-ons in the
near future:

a digitising tablet

an RS232 standard serial 2-way
interface

Please watch the magazine
advertisements.

Good Luck from all at MEMOTECH.

Guarantee
April 1982

This product is guaranteed free from defects
in material and workmanship for a period of
six months from the date of purchase subject
to the following conditions:
1. The guarantee does not cover any

damage caused through neglect,
incorrect adjustment, accident or mis¬
use and will be invalidated if the product
is modified or altered in any way or
repaired by anyone other than
Memotech Corporation.

2. Claims under this guarantee must be
made by sending the product (well
packed preferably in its original packing)
to the address below.

3. This guarantee is valid only in the case of
a purchaser resident in the United
States.

Memotech Corp
7550 West Yale Avenue
Suite 200
Denver, Colorado 80227

Model: Memopak HRG

Serial No: (if any).

Date of Purchase:.

Owner’s Name:.

Owner’s Address:.

Method of Purchase*.

Place of Purchase.

* Please enclose evidence of purchase
(receipt etc.) as without this we will be
unable to give a refund or replace this item.

E
x

am
p

le
 A

MEMOTECH CORP
7550 West Yale Avenue, Suite 200,
Denver,
Colorado 80227
Telephone: (303)986 1516
Twx: 9103202917

